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LAMBDA CALCULUS TERM REDUCTION: EVALUATING LLMS' PREDICTIVE CAPABILITIES

Abstract. This study is part of a research series of optimizing compilers and interpreters of functional programming 
languages. Lambda Calculus was chosen as the most straightforward functional programming language, which can process 
any operation available to other functional programming languages but with the simplest syntax. Using machine learning 
methods allows for uncovering relations inside lambda terms, which might indicate which reduction strategy better suits their 
reduction. Finding those techniques for lambda terms allows optimizing not only lambda term reduction but also interpreters 
and compilers of functional programming languages.

This research aims to scrutinize LLMs' understanding of Lambda term reduction to predict reduction steps and evaluate 
prediction accuracy. Artificially generated Lambda terms were employed Utilizing OpenAI's GPT-4 and GPT-3.5 models. 
However, due to model constraints and cost considerations, experiments were limited to terms with specific token counts.

Despite its larger size, results revealed that the GPT-4 model did not significantly outperform GPT-3.5 in understanding 
reduction procedures. Moreover, while the GPT-3.5 model exhibited improved accuracy with reduced token counts, its 
performance with more complex prompts was suboptimal. This underscores the LLMs' limitations in grasping Lambda terms 
and reduction strategies, especially with larger and more intricate terms.

Conclusions. The research concludes that general-purpose LLMs like GPT-3.5 and GPT-4 are inadequate for accurately 
predicting Lambda term reductions and distinguishing between strategies, particularly with larger terms. While fine-tuning 
may enhance model performance, the current findings highlight the need for further exploration and alternative approaches 
to achieve a deeper understanding of lambda term reduction using LLMs.
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Олександр ДЕЙНЕГА. РЕДУКЦІЯ ТЕРМІВ ЛЯМБДА-ЧИСЛЕННЯ: ОЦІНКА ПРОГНОЗИВНИХ 
ЗДАТНОСТЕЙ LLM

Анотація. Це дослідження є частиною серії досліджень оптимізації компіляторів та інтерпретаторів 
функціональних мов програмування. Лямбда-числення було обрано як найпростішу мову функціонального 
програмування, яка може обробляти будь-які операції, доступні іншим мовам функціонального програмування, але 
з найпростішим синтаксисом. Використання методів машинного навчання дозволяє виявити зв’язки всередині 
лямбда-термів, які можуть вказати, яка стратегія редукції краще підходить для їх нормалізації. Пошук цих 
методів для лямбда-термів дозволяє оптимізувати не тільки редукцію лямбда-термів, але й інтерпретатори та 
компілятори функціональних мов програмування.

Мета. Це дослідження має на меті вивчити як LLM розуміє лямбда-терми, для цього передбачити кроки редукції 
та оцінити точність передбачень. Використовувалися штучно створені лямбда-терми з використанням моделей 
OpenAI GPT-3.5 і GPT-4. Однак через обмеження моделей та міркування щодо вартості експериментів були обмежені 
термами з певною кількістю токенів.

Незважаючи на більший розмір, результати показали, що модель GPT-4 незначно перевершила GPT-3.5 у розумінні 
процесу редукції. Крім того, у той час як модель GPT-3.5 продемонструвала підвищену точність із зменшеною 
кількістю токенів, її продуктивність із більш складними термами була неоптимальною. Це підкреслює обмеження 
LLM у розумінні лямбда-термів і стратегій скорочення, особливо з більшими та складнішими термами.

Висновки. Дослідження показує, що LLM загального призначення, такі як GPT-3.5 і GPT-4, недостатні для 
точного прогнозування скорочень лямбда-термів і розрізнення стратегій, особливо з більшими термами. Хоча 
точне налаштування може підвищити продуктивність моделі, поточні результати підкреслюють необхідність 
подальшого дослідження та альтернативних підходів для досягнення глибшого розуміння редукції лямбда-терму 
за допомогою LLM.

Ключові слова: Лямбда-числення, Велика Мовна Модель, процес редукції, інженерія промпту.

Introduction. Our research aimed at optimizing functional programming compilers and interpreters. For 
this purpose, we considered Lambda Calculus the most straightforward possible representation of functional 
programming languages [1]. Lambda Calculus allows the execution of its programs called terms as the 
expression reduction process. The lambda terms can be divided into Applications, Abstractions, and Variables. 
The term reduction is possible using redexes, special combinations of Abstract, and any other term inside an 
Application. Some terms may contain more than one redex, and choosing a specific redex by some rule defines 
a reduction strategy. The most famous reduction strategies are the normal order or the leftmost outermost (LO) 
strategy and the applicative order or the rightmost innermost (RI) strategy. An example of the Y term is shown 
in Figure 1. The example describes all lambda term elements and the RI and LO strategies.
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Fig. 1. Example of the Y term, applying the rightmost innermost 
and the leftmost outermost strategies and showing term types

Research in the Lambda Calculus reduction process may help optimize the interpretation and compilation of 
other function programming languages using similar optimization techniques [2]. Understanding the Lambda 
terms reduction process may help uncover essential features and methods of discovering strategy priorities. 

Analysis of recent research and publications. Usually, reduction steps are estimated as equal [3], which 
allows comparison of reduction strategies via a simple number of reductions. In the research [4], we considered 
another approach to estimating reduction steps via their computational efficiency, which allows us to develop a 
greedy strategy that minimizes computational resources required for reduction. Although this approach enables 
estimating computational resources needed for single-step normalization, it does not allow us to understand 
the relation between specific terms and strategies that better suit its normalization. 

The problem of measuring term complexity was considered in the studies [5, 6], where memory consumption. 
Also, cost models were proposed in the article [7] to solve the same problem. All works show that it is possible 
to define the complexity of reduction steps via different approaches. 

The research [8] considers using the Transformer models for sequential analysis of lambda terms for 
predicting the type of term in Typed Lambda Calculus, which simply extends Lambda Calculus with defining 
types via specific terms without modifying the expressions lexicon. This usage highlights the idea that extracting 
particular term features that indicate its type is possible. That idea can be extended to the strategy priority, and 
in the research, [9] was considered to estimate the reduction steps number for the RI and the LO strategies. 
However, research [9], due to computational limitations, considers only simplified term representation, which 
does not count variable information. The study [9] results show that this approach allows accurate identification 
of reductions if the expected number is less than 10, but for bigger expected numbers, the accuracy drops. 

Studies [2, 10] solved the problem of losing variable information with more complex pretrained machine 
learning models, namely Microsoft CodeBERT [11] and OpenAI [12] embedding models. Those studies used 
vector representations of lambda terms created with Large Language models (LLM) and uninformed Machine 
Learning techniques to find the relation between collected vectors and the most suitable reduction strategy. 
The main issue with the studies [2, 10] is using pretrained models on programming languages or for general 
problems. It does not provide information about LLMs' understanding of lambda terms. 

Also, recent research has shown promising results with the implementation of LLMs for solving mathematical 
problems [13], code execution [14], and compilation optimization [15]. All such works show that it is possible 
to use LLMs as a discovery tool for code-related tasks, but no one has checked how good general tasks LLMs are 
for understanding lambda terms.

The research objective is to investigate LLM's understanding of the lambda term reduction process. 
Achieving this objective can be highlighted in the following tasks:

1. Prepare a lambda terms dataset containing the following reduction step term for the selected strategies.
2. Predict the following reduction step using the selected strategy, general LLM, and prepared terms.
3. Calculate the accuracy of such predictions and conclude that LLMs can be used to understand lambda 

term reduction and strategy differences.
Scientific novelty. For the first time, the ability of LLM to understand lambda calculus was investigated.
Research methodology. The research is considered one of the biggest publicly available general task LLM 

models, developed and trained by OpenAI: the GPT-4 and GPT-3.5 models [16]. Table 1 shows the considered 
models, their weights number, and price per million tokens [16].

Table 1
Comparison of the GPT-3.5 and GPT-4 models

Model name Weights Number Price of input per million tokens Price of output per million tokens
GPT-3.5 ~20 Billion 0.50$ 1.50$
GPT-4 ~220 Billion 30.00$ 60.00$
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In this research, artificially generated lambda terms were used. The procedure for generating those terms was 
described in the study [9]. Accordingly to the procedure, with some probability, choose the next term element 
(Application, Abstraction, or Variable from a set of available variables), which recursively builds a term. This 
procedure allows consider the maximum available terms in the selected bound of variables and probabilities of 
elements. This research uses the same terms dataset used in previous studies [2, 10]. However, considering price 
limitations, the number of terms used for testing decreased, considering the number of input and expected output 
tokens. The results of such data preparing shown in Table 2. Although the number of terms used in experiments 
has significantly shrunk, there are still enough terms to check the proposed LLM's ability to understand the 
reduction process with differing strategies. Also, shown LLMs require special text descriptions, called prompts, 
for problem statements, which a LLM must solve. The prompt size also increases the number of required input 
tokens for each term, and depending on the prompt, it can increase the number of expected output tokens

Table 2
Results of term dataset preparing

Original 
dataset

Cropped  
to 77 max tokens per term

Cropped  
to 40 max tokens per term

Terms number 4282 1019 305
Input tokens 523k 52k 8k

Expected output LO tokens 503k 45k 6.4k
Expected output RI tokens 521k 45k 6.4k

Considering the analysis of available GPT models' price and weight numbers and the concluded size of 
datasets, it is possible to define the methodology of experiments:

1. Prepare prompts for predicting the LO / RI steps using the GPT-3.5 / GPT-4 models.
2. Using prepared prompts, predict the following reduction step using the selected model (use for prediction 

cropped dataset to 77 tokens per term with GPT-3.5 and cropped to 40 tokens – GPT-4 model).
3. Postprocces predictions to formulate actual term answers.
4. Using the Lambda Calculus interpreter, the expected following terms are compared with actual predictions.
Results of research. The first stage of the study requires preparing a prompt. There are a few prompt types 

[17]: some require detailed descriptions of solved tasks, some require examples of solving, and others require 
simply asking about the task. Due to the high price of using the GPT-4 model, the simplest approach was chosen. 
On another site, the GPT-3.5 model was considered a few approaches.

 

Fig. 2. Using the description prompt, the GPT-3.5 model generates the following term according  
to the LO strategy
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Fig. 3. Using the detailed step prompt, the GPT-3.5 model generates the following term according  
to the LO strategy

 
Fig. 4. Using the simplest command prompt, the GPT-4 model generates  

the following term according to the LO strategy

Figure 2 shows an example of the description prompt used for the GPT-3.5 model, Figure 3 shows an 
example of the detailed step prompt used for the GPT-3.5 model, and Figure 4 shows an example of the simplest 
command prompt used for the GPT-4 model. All shown prompts are used for the LO strategy, but the prompt for 
the RI strategy differs only in the description of the RI strategy, but the logic is kept the same.

Table 3
Accuracy of the following step predictions with the GPT-3.5 and GPT-4 models

GPT-3.5 to LO 
(77 tokens)

GPT-3.5 to LO 
(40 tokens)

GPT-3.5 to RI 
(77 tokens)

GPT-3.5 to RI 
(40 tokens)

GPT-4 to LO 
(40 tokens)

GPT-4 to RI 
(40 tokens)

Description 
prompt 9.5% 23.6% 6.47% 17.04% – –

Detailed step 
prompt 4.0% 10.82% 3.0% 9.83% – –

Simplest 
command prompt 10.0% 27.21% 3.23% 9.83% 41.3% 36.39%

Table 3 shows all the experiments. Due to the high price of GPT-4 model generation, only the simplest 
command prompt and terms with a maximum of 40 tokens were considered, which showed the best results 
with the GPT-3.5 model. Experiments with the GPT-3.5 model were considered terms with a maximum of 77 
tokens; 40 token results were extracted from the collected results.

Discussion. Low accuracy on more complex prompts (description and detailed step) might indicate 
overloading the model with redundant details. Also, increasing accuracy with a decreasing maximum number of 
tokens shows that the GPT-3.5 model cannot profoundly analyze and understand lambda terms. Real programs 
can contain hundreds of variables, which is a big problem to analyze. A drop in accuracy of 5-7% on prediction 
following terms for the RI strategy compared to the LO can be explained by the fact that GPT-3.5 and GPT-4 
models do not wholly understand the redex and reduction strategy concept. However, the most significant 
accuracy for predicting the following RI term was achieved using the description prompt, indicating that LLMs 
can improve their redex understanding, but it depends on prompt construction.
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The 10% difference between the best results achieved on GPT-3.5 and GPT-4 indicates that increasing the 
number of model weights doesn’t significantly improve understanding of the reduction procedure. However, 
the GPT-4 model was the closest to accurate results.

This research benefits from showing that general task LLMs are unsuitable for predicting the following term 
step. Fine-tuning techniques can improve such models but with more affordable ones.

The research disadvantages are not uncovering all possible experiments on the GPT-4 model with different 
prompts due to the high generation price, using a limited number of tokens in experiment terms, and considering 
only OpenAI models. Considering these disadvantages, the following research step could fine-tune some LLM 
for more accurate results.

Conclusions. The results of the research were solved in the following tasks:
1. A lambda terms dataset has been prepared considering the limitations of selected LLM models. The 

prepared dataset allowed to check how selected models understand lambda calculus reduction and the 
difference in strategies by selecting two reduction strategies (LO and RI).

2. The following reduction steps were predicted using GPT-3.5 and GPT-4 models. The predictions were 
cleaned to check their reliability. 

3. Using the Lambda Calculus interpreter, the predictions' results were compared to expected terms, which 
allowed the predictions to be calculated accurately. The applicability of GPT-3.5 and GPT-4 was examined, 
and it was concluded that selected LLMs are insufficient to understand lambda term reduction and strategy 
differences, especially on larger terms.
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