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MONITORING MACHINE LEARNING MODEL DRIFT IN PRODUCTION PIPELINES:
METHODS, METRICS, AND DEPLOYMENT CONSIDERATIONS

Abstract. The relevance of the study is determined by the need to ensure the stability and effectiveness of machine learning
models in the context of dynamic changes in data. The problem of model drift - changes in the statistical characteristics of
input data or relationships between features and the target variable - leads to a decrease in prediction accuracy. Detecting and
monitoring drift in real-time is crucial for maintaining the stability of models, particularly in fields such as finance, healthcare,
and cybersecurity, where changes in input data or conditions can significantly affect model performance.

The aim of the paper is to investigate methods for monitoring model drift, particularly within the integration of CI/CD
pipelines, to ensure their stability in real-world conditions. Special attention is paid to types of drift (data drift, concept drift,
label drift) and the metrics used for their detection. The research methods include analyzing existing tools for monitoring and
detecting changes in model behavior through the example of financial risk forecasting, as well as evaluating the effectiveness
of integrating monitoring into CI/CD.

The scientific novelty lies in the proposed comprehensive approach to detecting drift and integrating monitoring into
production pipelines using advanced tools such as Google Vertex Al, AWS SageMaker, and TensorFlow Extended, which allow
automatic response to changes in data. The use of such technologies improves prediction accuracy and reduces errors in real-
world environments. The study confirms the importance of integrating drift monitoring into the continuous process of updating
and adapting models to maintain their effectiveness in the context of constantly changing data.

The conclusions show that integrating drift monitoring systems into CI/CD pipelines significantly improves the stability
and effectiveness of models. Timely detection of drift allows for prompt model adjustments, reducing the likelihood of model
degradation. It has been found that for achieving model stability, the automation of monitoring is crucial, as it allows for a
prompt response to changes without manual intervention. This enhances the system’s efficiency and reduces risks related to
the deterioration of prediction quality.

Key words: drift monitoring, Cl/CD pipelines, MLOps, model stability, automation, TensorFlow Extended, Google Vertex Al,
AWS SageMaker, data drift, concept drift, label drift.

Mapuna BAYTIHA. MOHITOPUHT JAPEW®Y MOJEJEA MAILIMHHOTO HABYAHHA B NMPOAYKIIMHUX
MAHIUIAMHAX: METOJIM, METPUKHU TA ACIIEKTHU PO3TOPTAHHA

Anomayis. AkmyasnsHicmb docaidxiceHHs 3yMos/1eHa HeobxidHicmio 3a6e3neveHHs1 cmabinibHocmi ma eghekmugHocmi
Modes1ell MAWUHHO20 HABYAHHS 8 YMOBAX OUHAMIYHUX 3MIH daHuX. [Ipobaema dpelihy modeell — ye 3MiHA cmamucmuyHux
Xapakmepucmuk 8xiOHuUX daHux abo 3a/nexcHocmell Mixc 03HAKAMU Ma Yifb08OH 3MIHHONW, WO Npu3eodums 9o 3HUNHCEHHS
moyHocmi npozHo3ie. BusieseHHs1 ma MoHImopuHz dpelidpy 8 peanbHoMy uaci € saxcaugumu 011 cmabiibHoi pobomu mode-
Jetl, 0c061u80 8 MaKux 2ay3six, ik piHaHcu, oxopoHa 300pog’s, Kibepbe3neka, de 3mMiHU 8XiOHUX OAHUX 6O YMO8 MONCYMb
3HAYHO 8NUHYMU HA pe3y/bmamueHicms Modesell.

Memoto cmammi € docaidxiceHHs1 Memodie MOHIMopuHzy dpelighy modeseli MauwUuHHO20 HABYAHHS, 30KPEMA 8 PAMKAX IH-
meepayii e Cl/CD naiinaatinu das 3a6e3nevelHs1 ixHboi cmabiabHocmi y peanavHux ymosax. Okpemy yeazy npudiieHo munam
dpeligpy (data drift, concept drift, label drift) ma mempukam 0as ix eusieneHHs. Memoodu 0ocaidxHceHHS 8KAOUAIOMb AHANI3
icHyto4uXx iIHcmpymMeHmie 04151 MOHIMoOpUHay ma 8usi8/ieHHs 3MIH y nogediHyi modeseli Ha npukaadi piHaHCO08020 NPO2HO3Y-
8aHHs1, @ makodic OYiHKy efpekmugHocmi inmezpayii monimopunzy 6 C1/CD.

Haykoea HO8U3HA noJ/isi2ae y 3anponoHO8AHOMY KOMNJAEKCHOMY nidxodi do susieieHHsl dpelighy ma iHmezpayii MoHi-
mopuHay 8 supobHu4i natinaaiiHu 3a donomozow nepedosux iHcmpymernmis, makux sik Google Vertex Al, AWS SageMaker,
ma TensorFlow Extended, wjo do360.15€ 3a6e3neyumu asmomamuyHe peazy8aHHs HA 3MiHU 8 0aHuX. BUKOpUCMAaHHA makux
mexHo/102ill nidsuujye mouHicmes npozHo3ie i 3MEHWYE KiAbKICMb NOMU/OK Y peansHOMy cepedosuwyi. JlocaioxceHHs nio-
meepaicye saxcausicms iHmezpayii MoHimopuHzy dpeligpy 8 6esnepepsHuli npoyec oHO81eHHS ma adanmayii modesaell 045
3a6e3nevyeHHs ixHboi egpekmugHocmi 8 yMosax nocmitiHo 3MIHIOBAHUX OAHUX.

BucHoeku nokasyroms, Wo iHmezpayis cucmem MoHimopuHzy dpetigpy e Cl/CD naiinaaiiHu 3Ha4Ho nokpaujye cmaobiib-
Hicmb i ehekmueHicmb Mmodeell. C8oeuacHe susig/ieHHs dpelighy 00380/15€ OnepamueHo Kopuzysamu Modei, Wo 3HUNCYE
limogipHicmy ix dezpadayii. BusisseHo, Wo 015 docsieHeHHs: cmabiibHocmi Modeiell 8axcaAusa agmomamusayiss MOHIMopuH-
2y, aKull 00380.15€ onepamusHo peazygamu Ha 3MiHU 6e3 nompebu 8 pyuHoMy empyyaHHi. Lje nideuwjye efpekmusHicms cuc-
memu ma 3HUNCYE PU3UKU, NO8’A3AHI 3 NO2IPUEHHSM KOCMI NPO2HO3I8.

Kawuosi cnosa: monimopune dpetigy, Cl/CD natinaaiinu, MLOps, cmabiabHicms modeetl, asmomamu3sayisi, TensorFlow
Extended, Google Vertex Al, AWS SageMaker, data drift, concept drift, label drift.

Problem statement. In today’s context of widespread implementation of machine learning systems in pro-
duction processes and services, the problem of ensuring the stability and reliability of their operation in a
dynamic environment is of particular relevance. One of the critical threats to the quality of predictions of such
models is the phenomenon of drift, i.e., a change in the statistical characteristics of input data or dependencies
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between features and the target variable, which leads to a gradual decrease in the accuracy and reliability of the
model. Drift can be caused by external factors such as changes in user behavior, market fluctuations, technolog-
ical updates, and internal factors such as the accumulation of errors or imperfect initial training. Ignoring this
process can lead to significant losses for businesses that rely on automated solutions, particularly in finance,
healthcare, cybersecurity, logistics, and e-commerce.

The problem is the lack of a universal approach to detecting, measuring, and responding to model drift in
the production environment. Most existing systems do not provide a built-in mechanism for monitoring model
performance after its deployment, which makes it difficult to detect degradation of results early. In this context,
the development and systematization of drift monitoring methods, selecting relevant metrics, and considering
the infrastructural aspects of implementing such solutions in real-world conditions are of scientific impor-
tance. The study’s practical significance is stipulated by the need to create adaptive systems that can identify
drift and effectively manage the model’s life cycle, ensuring its relevance, compliance with new conditions and
minimizing business risks.

Analysis of the latest research and publications. The analysis of scientific research confirms that moni-
toring the drift of machine learning models in product pipelines covers three main areas: drift detection meth-
ods, monitoring metrics and architectures, and model deployment and maintenance aspects.

The first area covers developing and applying methods for detecting data and concept drift in machine learn-
ing. The work of D. Eastvedt, G. Naterer, and X. Duan demonstrated using a regression model to detect damage in
subsea pipelines by monitoring flow changes. This allows for identifying deviations in hydraulic parameters in re-
al-time [7]. S. Shankar and A. Parameswaran emphasize the concept of observability as a prerequisite for effective
drift monitoring in ML systems, proposing the integration of internal and external signals of changes in model be-
havior [19]. ]. Zenisek, F. Holzinger, and M. Affenzeller applied machine learning methods to detect concept drift in
predictive maintenance tasks, emphasizing the effectiveness of classifiers sensitive to feature distribution changes
[24]. N.Jourdan, T. Bayer, T. Biegel, and ]. Metternich focus on deep learning architectures for detecting drift result-
ing from changes in process parameters during production [12]. S. Ackerman, E. Farchi, 0. Raz, M. Zalmanovici,
and P. Dube analyze the impact of drift and outliers on the long-term performance of models and propose methods
to maintain the stability of forecasts [1]. It is advisable to complement this area by creating hybrid algorithms that
integrate the detection of both data drift and changes in model concepts and responses.

The second direction concerns the creation of metrics, tools, and architectures for system monitoring of
ML models. P. Kourouklidis, D. Kolovos, ]. Noppen, and N. Matragkas propose a model-oriented approach to
monitoring, including describing models at the meta-level and using specifications to automatically detect de-
viations in functioning [13]. B. Derakhshan, A. Rezaei Mahdiraji, T. Rabl, and V. Markl present an architecture
for continuously deploying ML pipelines with built-in drift-checking steps as part of the CI/CD process [6].
A. Nandan Prasad describes the components of ML systems supervision within the framework of data govern-
ance: logging, alerts, and interpretation of performance changes [17]. D. Wani, S. Ackerman, E. Farchi, X. Liu, and
H. Chang focus on the tasks of drift detection in log-analytic pipelines using time series and control over input
data distributions [21]. P. Yadav, V. Singh, T. Joffre, O. Rigo, C. Arvieu, E. Le Guen, and E. Lacoste demonstrate an
example of drift monitoring in a production system for selective laser melting, where inline monitoring meth-
ods are applied, and actual parameters are compared with predicted ones [22]. In their monograph, H. Hapke
and C. Nelson systematize the construction of ML pipelines with the inclusion of monitoring mechanisms at all
stages - from data collection to forecasting [11]. It is advisable to complement this area by unifying drift met-
rics, developing alert standards, and integrating Explainable Al tools to interpret the detected changes.

The third area covers deploying, maintaining, and adapting models in changing environments. Y. Yang, Y. Li,
T. Zhang, Y. Zhou, and H. Zhang describe an approach to early detection of threats in pipeline systems based on
a sensor network and ML models, which demonstrates the need to constantly adapt models to new types of
signals [23]. B. C. Vadde and V. B. Munagandla study the transformation of DevOps in the context of ML, propos-
ing implementing MLOps practices with a focus on model maintenance, drift testing, and version control [20].
B. Celik and ]. Vanschoren present strategies for adapting AutoML to evolutionary changes in data, offering au-
tomatic selection of stable configurations [5]. It is advisable to complement this area by developing frameworks
that combine technical scaling, automatic drift detection, and verification of compliance with business goals.

The general analysis shows that monitoring model drift in product ML systems requires an interdisciplinary
approach that combines algorithmic methods, engineering practices, and management vision. Further research
should be aimed at creating adaptive and transparent systems that can respond to environmental changes
promptly without losing model accuracy and interpretability.

Despite significant advances in machine learning model drift detection, several unresolved issues exist. One
of the main ones is the limitation of traditional metrics for detecting different types of drift, such as data drift,
concept drift, and label drift, which limits the accuracy and timeliness of detecting model changes. In addition,
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there is a lack of universal approaches to automatic drift monitoring within MLOps, which creates difficulties
when integrating such systems into real-world CI/CD pipelines. Also, the issue of integrating drift monitoring
into the continuous model updating process remains open, which is necessary for effective, scalable applica-
tions in a real environment.

The proposed research aims to develop new methods and tools for more accurate drift detection, real-time
model adaptation, and integration into CI/CD pipelines. This will reduce the risks associated with model degra-
dation and ensure their stability in the face of changing data, which is essential for the further development of
science and practical applications in many fields such as finance, healthcare, and cybersecurity.

The purpose of the article is to study the possibilities and risks of using artificial intelligence in education
from the perspective of data science to determine how to optimize its implementation, taking into account eth-
ical, technological and social aspects.

To achieve this goal, the following tasks have been identified:

1. Analyze methods for detecting the drift of machine learning models, considering the types of changes
(data drift, concept drift, label drift) and the effectiveness of using metrics in machine learning pipelines.

2. Explore approaches to automatic drift monitoring in MLOps, including adaptive model management in
the production environment.

3. Determine the importance of continuous integration and delivery (CI/CD) for implementing drift moni-
toring mechanisms in a reliable and scalable environment.

Summary of the main material. In the process of using machine learning models in production environ-
ments, the problem of losing forecasting accuracy due to changes in the statistical characteristics of the data or
the patterns in the subject area itself is becoming increasingly relevant. Such changes can be caused by gradual
transformations in user behavior, changes in market conditions, technical updates, and random external events.
In this context, the study of drift types and appropriate detection methods becomes a key aspect of ensuring
the stability and reliability of models within the framework of learning pipeline machines. The most common
types of drift are data drift (change in the distribution of input features), concept drift (change in the relation-
ship between features and the target variable), and label drift (change in the distribution of the target variable).
Various metrics are used to respond to these changes, including statistical distances, classification errors, and
indicators of cluster stability or probability reduction in Bayesian models. Understanding the nature of each
type of drift and applying the appropriate tools allows you to build an effective monitoring system in the face
of dynamic data (Table 1).

In the current context of the practical use of machine learning models, particularly in automated forecasting
systems, recommendation services, financial scoring, or fraud protection, each type of drift can have a different
impact on model performance. For example, data drift is typical in e-commerce, where user behavior changes
depending on seasons or external factors. In contrast, concept drift is more common in financial models due
to changing economic conditions or the emergence of new types of transactions. In such cases, a monitoring
system integrated into the MLOps infrastructure can use the above metrics to signal a decline in model quality.

Table 1
Characteristics of machine learning model drift types,
methods of detecting them, and relevant metrics
Type of drift The nature of the data change Main methods of detection Examprllfest:ifcaspplled

Data drift Changing the distribution of input Distribution analysis, histogram | Kullback-Leibler Divergence,

features without changing the mapping | comparison PS], JS Divergence
Conceptual Changing the relationship between the | Sliding windows, model Accuracy decay, Page-
drift features and the target variable reconstruction, ensembles Hinkley Test, DDM
Label drift Changing the frequency or composition | Monitoring the target variable, |Hellinger Distance, Label

of classes in the labels comparing frequencies Distribution Comparison

Source: compiled by the authors based on [1; 5; 21; 24]

This allows for timely re-training, adaptive updating, or recalculation of hyperparameters. The distribution
of roles in drift detection is also important: developers are responsible for the built-in mechanisms, while De-
vOps specialists provide logging and transfer of signals to the relevant CI/CD processes. Thus, systematic drift
detection based on the classification of its types and relevant metrics is the key to stable and controlled opera-
tion of models in real-world conditions.

Automatically detecting and monitoring model drift within the MLOps paradigm is a critical component
of the modern machine learning model lifecycle. Once a model is deployed into a production environment,
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its quality may change due to changes in input data, user behavior, or external context, resulting in reduced
accuracy or disrupted decision-making logic. Therefore, MLOps as an engineering and management paradigm
focuses not only on automating the deployment and updating of models but also on continuous monitoring of
their performance. In this context, automatic drift monitoring involves the implementation of processes for col-
lecting, processing, analyzing, and signaling changes in model behavior. Such processes are implemented with
the help of specialized tools that integrate into data pipelines and interact with CI/CD systems, ensuring con-
tinuous control and adaptive model management based on defined thresholds. A key element of this process is
the ability to respond in a timely manner, including retraining, updating hyperparameters, replacing the model,
or correcting data. In practical terms, these functions are realized through the services of such companies as
Google (Vertex Al Model Monitoring) [9], AWS (SageMaker Model Monitor) [3], Microsoft (Azure Monitor) [15],
as well as through open-source frameworks such as Evidently Al [8], River [18], or Alibi Detect [2] (Table 2).

Table 2
Methods for automatic monitoring of machine learning model drift in MLOps
and adaptive model management in the production environment
. T . Integration into Support for adaptive
Platform / tool Drift monitoring mechanism MLOps / CI/CD response

Google Vertex Al Automatic tracking of data/ Full integration with Vertex Notifications via Pub/Sub,

concept drift Pipelines and TFX automatic retraining
AWS SageMaker model | Baseline-based monitoring of Integration with SageMaker Events for Lambda or Step
monitor changes in distributions pipelines and cloudwatch Functions
Microsoft azure Monitoring model performance |Connection with Azure DevOps | Manual or automated
monitor via ML telemetry and ML lifecycle management |updates
Evidently Al Web interface and API for drift | Embeds in any pipeline via Metrics, alerts, integration

monitoring Python SDK with Airflow/Kubeflow
Alibi detect / river Statistical drift detection in Suitable for edge or online Real-time support, event

streaming data environments flagging

Source: compiled by the authors based on [2; 3; 4; 8; 9; 15; 18]

The systems presented in Table 2 are developed by leading companies such as Google, AWS, Microsoft, and
Meta Al and offer a variety of monitoring approaches to improve the reliability and efficiency of models in pro-
duction environments.

For example, Google Vertex Al provides powerful tools for real-time model monitoring, including data and
concept drift detection, and integrates with other Google Cloud components to provide full automation of pipe-
lines [9]. The TensorFlow Extended (TFX) platform allows building scalable pipelines that include automatic
detection of data changes, adaptive learning, and model updates, which ensures stability at all stages of the
model cycle [10].

Amazon SageMaker Model Monitor is another powerful tool for automatic drift detection that compares
current data distributions with baseline profiles to identify deviations, allowing timely model adjustments
and preventing model degradation [3]. In particular, AWS Machine Learning Lens offers recommendations for
building architectures for ML systems with built-in mechanisms for monitoring and responding to changes [4].

Microsoft Azure offers comprehensive solutions for model lifecycle management through Azure Machine
Learning, including continuous monitoring and automatic model updates. The platform supports integration
with Azure DevOps, which provides synergy between monitoring and CI/CD processes [15]. Additionally, Mi-
crosoft Responsible Al emphasizes the importance of adaptive model management with ethical standards,
which helps to ensure the stability and correctness of model behavior in a changing environment [16].

Meta Al on the other hand, uses Fully Sharded Data Parallel, which allows efficient management of large
models and reduces the load on resources while maintaining the stability and accuracy of results even in the
face of significant changes in input data [14].

Thus, the approaches presented in Table 2 reflect current practices in the automatic monitoring of model
drift in the context of MLOps, allowing them to adapt and optimize models in the face of changing data and ex-
ternal factors, which is important to ensure their stable operation in the production environment.

Integrating drift monitoring is critical in today’s continuous integration and delivery (CI/CD) environment
for machine learning models. CI/CD mechanisms create an infrastructure that allows you to automatically up-
date models, track their performance, and ensure stability in the face of changing data. This lets you quickly
detect deviations from optimal model performance and take the necessary measures to maintain its reliability
and efficiency. The practical example of using CI/CD for drift monitoring allows us to realize this idea through
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an automatic process that includes constant updating, performance checking, and detection of changes in mod-
el behavior, which can significantly improve its stability in a real-world environment.

As part of the experimental study, a practical case of implementing drift monitoring of machine learning
models in the financial sector was implemented. The business problem arose after the launch of a new loyalty
program: the bank faced a sharp increase in the number of customers who fell into the risk zone, despite high
predicted solvency indicators. This led to suspicions that the credit risk forecasting model was degraded. The
study collected transactional data for the last 12 months, behavioral metrics (frequency of payments, regular-
ity of spending, average amount), and basic demographic characteristics (age, region, income level). XGBoost's
model was built on historical data with a «risky/non-risky customer» target. After its training, it was integrated
into the CI/CD pipeline using TensorFlow Extended (TFX), and monitoring was implemented through Google
Vertex Al. Table 3 shows a comparison of the tools used in the case study with a description of the monitoring
methods and the results of their application.

Table 3
Comparison of tools for monitoring model drift within CI/CD pipelines
and results of their use in the case study

- Methods of drift Approach to integration .

Tool description monitoring with CI/CD Results of the experiment
Cloud-based platform Automatic detection of Integration via Vertex Changes in the age distribution
for ML models and data and concept drift Pipelines and behavioral patterns were
monitoring detected, retraining was

initiated
A platform for creating | Tracking drift at the CI/CD integration via TFX The model was updated to
full-fledged ML pipelines | preparation and evaluation | Pipelines reflect the changes in features,
stages and the history of changes was
saved
AWS platform for ML Comparison with Integration with AWS Increase in drift errors
models and distribution | the baseline profile, CodePipeline confirmed, model replaced with
monitoring [3]. monitoring a backup model, errors reduced

Source: compiled by the authors based on [3; 6, 9; 10; 17]

During the experiment, the performance of the model was monitored in a real environment for four months.
Google Vertex Al [9] revealed a significant data drift: the share of young borrowers (under 30) increased by
18%, which affected the model’s accuracy. Concept drift manifested itself in a change in the relationship be-
tween income and probability of default: customers with official average income became more likely to de-
fault after the launch of the deferred payment program. Label drift also occurred: the share of «risky» cases
increased by 12% compared to the training sample [21].

Thanks to the integrated monitoring system, drift alerts were automatically generated, the process of
re-training the model on updated data was initiated, and the model version in the production environment was
automatically updated. After the update the average error rate in risk classification decreased by 15%.

This case study proved that in the absence of automated drift monitoring, the bank would have continued
to make erroneous loan decisions, which could have led to increased financial losses. Instead, the CI/CD in-
frastructure with built-in monitoring made it possible to quickly adapt the model to new realities and avoid
critical degradation of the quality of forecasts.

To better illustrate the process of model degradation and its improvement after automatic retraining, Figure
1 shows the change in the model’s error rate over a four-month observation period. The data clearly reflect the
growing performance deterioration caused by various types of drift and the subsequent recovery following the
implementation of monitoring and CI/CD-based model updating. (fig. 1).

As shown in the chart, the model’s classification error increased progressively from 22% to 28% over four
months, reflecting a gradual decline in accuracy due to data drift (e.g., demographic shifts), concept drift (chang-
es in feature-target relationships), and label drift. These changes remained undetected without monitoring and
could have led to further forecasting errors. However, after automated retraining was triggered through Google
Vertex Al and CI/CD pipelines, the error rate dropped to 12%. This confirms the effectiveness of integrated drift
monitoring systems in stabilizing model performance and mitigating prediction risks in real-time production
environments.

Detecting and interpreting machine learning model drift is accompanied by several challenges that limit
the effectiveness of existing approaches. One of the main difficulties is the limitation of traditional metrics for
drift detection. Many metrics, such as Kullback-Leibler divergence or Hellinger Distance, cannot accurately
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capture model behavior changes under complex data changes [17]. They often focus only on superficial chang-
es in the distribution of features, while changes in concepts or interdependencies between variables may be
more critical.
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Fig. 1. Model Error Rate Over Time
Source: compiled by the author

Another problem is the difficulty of modeling changes in data, as they can be unpredictable and not always
linear. Traditional models often do not consider contextual or cyclical changes, typical in financial or social
systems where data may experience periodic fluctuations or spikes. This makes it difficult to develop adaptive
algorithms that can instantly respond to these changes [13].

Finally, the absence of a single framework for the practical application of drift monitoring in complex en-
vironments changes the approach to integrating such systems into production environments. Existing tools
do not always provide easy integration into CI/CD pipelines or have limited support for specific domains.
This makes it difficult to create scalable, versatile solutions that can be adapted to different industries or
model types.

Integrating a drift monitoring system into the machine learning model development cycle is a prerequisite
for ensuring the reliability and stability of models in a real-world environment. This allows the timely detection
of data changes and the adaptation of models to new conditions, which is important for their efficiency and
accuracy. Within the modern CI/CD paradigm, it is important to automate the monitoring process so that the
system can continuously monitor data and model performance without intervention from developers. Integra-
tion with CI/CD allows you to automatically update models to correct deficiencies without the need for manual
intervention, significantly increasing work efficiency and reliability.

Drift monitoring in CI/CD involves using tools to detect changes in input data distribution or model behav-
ior automatically. Detecting such changes is key to maintaining model stability in changing data. The use of
specialized metrics to assess drift, such as changes in forecast accuracy or values of conceptual drift metrics,
allows early detection of the need to retrain or optimize the model. An important aspect is the ability to auto-
matically update models using built-in processes, such as retraining or adjusting hyperparameters, without the
involvement of human resources, which increases the efficiency of the process.

Integrating monitoring into a single model management system is essential to ensure continuous quality
control. CI/CD-enabled platforms allow you to automatically capture change history and set up testing and veri-
fication processes. This allows the quality of models to be controlled at all stages of their life cycle and promptly
to changes in data or external conditions. In large data volumes and high processing time requirements, the sys-
tem must scale and process data in real time, reducing delays and ensuring that models are updated promptly
when drift is detected.

In general, the integration of drift monitoring into CI/CD pipelines creates the basis for building stable and
adaptive machine learning models that can effectively respond to changes in data and maintain high accuracy
of predictions in a dynamic environment.
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Conclusions. The study confirmed that integrating drift monitoring into CI/CD pipelines is essential for
maintaining machine-learning models’ stability and accuracy under dynamic data change conditions. Based on
a practical case in the banking sector, it was shown that timely detection of data, concept, and label drift enabled
arapid response to changes in customer behavior and preserved the reliability of risk assessment models.

The main challenges identified include the limitations of traditional metrics -such as Kullback-Leibler di-
vergence and Hellinger Distance - which often fail to reflect complex behavioral shifts in data and the lack of
universal frameworks for integrating monitoring tools into diverse production environments.

Future research should focus on developing improved monitoring algorithms and flexible integration solu-
tions that support the real-time adaptation of models. Enhancing automated responses to data drift will ensure
the long-term reliability of machine-learning systems.

The experimental results demonstrated that applying platforms like Google Vertex Al and TensorFlow Ex-
tended reduced classification errors by 15% by enabling automatic retraining and adjusting models in response
to drift, highlighting the practical value of continuous monitoring mechanisms.
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