Information Technology and Society. Issue 3 (9). 2023

UDC 004.65
DOI https://doi.org/10.32689/maup.it.2023.3.8

Valerii NIKITIN
Postgraduate Student at the Department of Information Systems and Technologies, Igor Sikorsky Kyiv Polytechnic
Institute (19valeranikitin96 @gmail.com)

ORCID: 0000-0002-4509-1204

Evgen KRYLOV
Candidate of Technical Sciences, Senior Lecturer at the Department of Information Systems and Technologies, Igor
Sikorsky Kyiv Polytechnic Institute (ekrylovl1964@ gmail.com)

ORCID: 0000-0003-4313-938X

Baunepiil HIKITIH
acnipanm kagedpu iHpopmayiliHux cucmem ma mexHosoeil, KIII im. leops Cikopcbkozo
(19valeranikitin96 @gmail.com)

€szen KPH/IOB
KaHdudam mexHiYHUX Hayk, doyeHm kagedpu iHgpopmayitiHux cucmem ma mexHoo2it, KI11 im. [zops Cikopcbkozo
(ekrylov1964@gmail.com)

Bibliographic description of the article: Nikitin, V., Krylov, E. (2023). Mekhanizm Active Anti-Entropy na
osnovi spektralnoho filtru Bluma ta PH-2 alhorytmu kheshuvannia dlia uzghodzhennia replik u nereliatsiinykh
rozpodilenykh dokumentooriientovanykh bazakh danykh [Active Anti-Entropy mechanism based on Spectral
Bloom Filter and PH-2 hash algorithm for reconcilation of replicas of NoSQL distributed document oriented
databases]. Informatsiini tekhnolohii ta suspilstvo - Information technology and society, 3, 63-67. DOI: https://
doi.org/10.32689 /maup.it.2023.3.8

Bi6aiorpadiunmii omuc crarri: Hikitin B, KpunoB €. Mexanizm Active Anti-Entropy Ha ocHOBI
cnekTpajsbHoro ¢inpTpy bayma ta PH-2 anroputmy xelnyBaHHS AJs1 Y3rO[KEHHS PeIUIK y HepeasinifHux
pO3MN0AiNeHUX JOKYMEHTOOPIEHTOBAHUX 6a3ax JaHUX. [HpopmayiiiHi mexHoa02ii ma cycninbemeso. 3, 63-67.
DOLI: https://doi.org/10.32689 /maup.it.2023.3.8

ACTIVE ANTI-ENTROPY MECHANISM BASED ON SPECTRAL BLOOM FILTER
AND PH-2 HASH ALGORITHM FOR RECONCILATION OF REPLICAS
OF NOSQL DISTRIBUTED DOCUMENT ORIENTED DATABASES

Abstract. Information systems are used in many areas of human activity, which are not limited to one country or continent.
This may require horizontal scaling for the system to function properly. Ignoring this can affect performance and availability,
which in turn can lead to a loss of reputation and users.

Horizontal scaling increases the number of database replicas, which creates the need for data reconciliation, since writing
operations to different nodes increases entropy. There are various technologies aimed at reducing it, including Active Anti-Entropy.
Its essence is to detect inconsistencies and start the reconciliation process between replicas. It is actively used in a database such
as Riak and uses the Merkle Tree data structure, which is based on the use of hashing algorithms. The speed of inconsistency
identification depends on the chosen hashing algorithms and the number of documents in the collection. An increase in the number
of documents or even their size can worsen the even distribution and lead to an increase in the number of collisions. The occurrence
of collisions increases the time period of data inconsistency, because the system cannot detect the inconsistency in time.

In addition to the collisions that can occur, you need to consider the delay due to data transfer over the network when nodes
interact, and remember that such verification is not a one-time operation, but requires constant computation on replicas and
sending for verification. Minimizing the time of these operations will speed up the data reconciliation process.

Critically important data must be reconciled with minimal delay, as an untimely or incorrectly made decision can lead to
material or even human losses. To prevent this, there must be a solution that will minimize the delay of matching such data.

Key words: NoSQL, distributed system, Active Anti-Entropy, Spectral Bloom Filter, consistency, PH2 hash algorithm.

MEXAHI3M ACTIVE ANTI-ENTROPY HA OCHOBI CIIEKTPAJIbHOI'0 ®L/IBTPY BJIYMA
TA PH-2 AJITOPUTMY XELHIYBAHHA IJ14 Y3Iro/AKEHHA PETVIIK'Y HEPEJIANIMHUX
PO3IOAVTIEHUX JOKYMEHTO-OPIEHTOBAHHUX BA3AX IAHUX

Anomayis. IHgpopmayitiHi cucmemu sukopucmosyomscsy 6azamvox cgpepax dissAbHOCMI NH0OUHU, SKI He 06MeHcyromb-
cs1 00Hi€W KpaiHoto a6o KoHmuHeHmoM. Lle modce npuseodumu do HeobxidHOCMI 20pU30HMANBLHO20 MACWMABY8AHHS, W06
cucmema Mo21a HOpMaabHO yHKYioHysamu. I2HOpy8aHHs ybo20 Modce 8naugamu Ha weudkodito ma docmynHicms, wo y
c8010 uepey npusgede do empamu penymayii ma kopucmyeadis.

Information Technology and Society. Issue 3 (9). 2023 63

Ingpopmayiiini mexnonoeii ma cycninecmeo. Bunyck 3 (9). 2023

IIpu 2opuzoHmanbHOMy MacwumabyeaHHi 36i1bUWYEMbCS KibKicmb penik 6a3u daHux, Wo cmeopre HeobxioHicmb 8 y3-
200xceHHI daHux, OCKinbKu onepayii 3anucy do pizHux 8y3.ie 36iabuye enmponiro. € pisHi mexHosozii, ski HanpaeaeHi Ha if
3MeHueHHsl, ceped sikux Active Anti-Entropy. Cymb ii nosasizae y momy, wo6 8uss8umu HeKOHCUCMEHMHICMb ma posnoyamu
npoyec y3200xceHHs1 Mixc penaikamu. Bona akmueHo sukopucmogyemucsl y makill 6asi daHux, ik Riak ma eukopucmosye
cmpykmypy daHux Merkle Tree, sika 6a3yemubcsi HA BUKOPUCMAHHI asnzopummie xewlyeaHHsl. llleudkicmo idenmughikyeanHs
Hey320dxceHoCcmi 3a1excums 8i0 06paHuX a/120pUMMie Xewy8aHHs ma KiibKocmi doKyMeHmie 8 Ko1ekyii. 36i1bueHHs Kilb-
Kocmi dokymeHmie abo Hagime ix po3mip Modce nozipuysamu pisHomipHull po3nodin ma npuzeodumu 0o 36iAbWeEHHS Kilb-
Kocmi Koi3ill. BuHUKHeHHs1 K0Ai3itl 3611buye NpoMIiNCOK uacy Hey3200xceHocmi daHUX, OCKIIbKU cucmeMa He Modice 84aCHO
8UABUMU HEKOHCUCMEHMHICMb.

Okpim KoAi3ill, AKi MOJCymMb 8UHUKaMU, NOMpIi6HO 8paxogysamu 3ampuMKy yepe3 nepedady 0aHUX Mepexceio npu 83ad-
eModii 8y3/1i6 ma nam’sasmamu, Wo maka nepesipka He € n0OJUHOKOI onepayieo, a 8uMazde nocmitiHo2zo 06YUCAEHHs HA
pensiikax ma gionpaeku 015 nepegipku. MiHimizayisi uacy 8UKOHaHHS Yux onepayitl 00380.1umsv hpuweudwumu npoyec y3-
2003ceHHs1 0aHUX.

KpumuuHo eadcauei daHi noguHHi 6ymu y3200ceHi 3 MIHIMA/ILHOW 3AMPUMKOI0, OCKI/IbKU HE8YACHO a60 Henpasu/ibHO
nputiHame piweHHs Modce npusgecmu 00 MamepiaabHux, abo Hasime A00CbKUX empam. A5 3anobi2aHHA YboMy, NOBUHHO
icHysamu piweHHs, ke 00380.1uMb MIHIMIZy8amu 3ampuMKy y3200H#CeHHS MaKux 0aHUX.

Kniouosi cnoea: Hepeasyilina 6aza daHux, po3nodisieHa cucmema, akmueHa aHmieHmponis, cnekmpaasHuil ginemp
bayma, KoHcucmenmmuicms, an2zopumm xeuly8aHHs PHZ.

Problem statement. Horizontal scaling of information systems increases speed and availability due to
increased computing power, but in turn, creates additional tasks. One of these tasks is the reconciliation of data
on different replicas of a distributed database [1].

Since digitalization permeates almost all spheres of human activity, there may be completely different
cases that emphasize the need to pay attention to it. It can be the coordinates of objects in space, and various
financial transactions that can be carried out in different point of the Earth. Given the development of
mobile technologies, which cause an increase in bandwidth and radius of coverage, the opportunities for
automating processes that could not be automated before are increasing. In addition, such a direction as the
Internet of Things is actively developing, which requires a large number of sensors, which in turn increase
the amount of information in cyber-physical systems. It should be noted that technologies are actively being
implemented in the goverment sector of countries and information about citizens should be consistent for all
public services from different sources. In addition, the consistency of certain data on citizens can be useful
for partner countries to simplify the work of border services, perhaps even to find the necessary qualified
engineers or scientists [2].

Latest research and publications analysis. Distributed databases can use different techniques to maintain
consistency. They can represent not only additional mechanisms, but be provided at the level of the architecture
of the database itself and its CRUD operations [3].

One method may be to centralize write operations, which guarantees synchronous writing to replicas. Data
is read from replicas, which significantly reduces the load from the central node. In addition, the presence of
replicas improves the availability of the database, because if one node goes down, it is possible to continue
work using copies.

BeneHHs Bepcili 3anKCiB TaKoX € METO/IOM BUpilleHHS KOHQIIIKTIB, iKe BUKOPHUCTOBYE BEKTOP 4acy. Bek-
TOP 4Yacy - lie NOC/IiI0BHICTh Nap, SIKa OMKCYE MOPS0K MOHOBJIEHHS LbOro 3anucy. [lepeBaraMu BeKTOpY 4acy
€ BiICYTHICTb €IUHOI TOYKH BiJMOBHU CUCTEMH, TOMY 110 TP BUKOPUCTAHHI TUMYaCOBUX MITOK B 3alucax
HeoOXiZTHO BUKOHYBATH TOYHY CUHXPOHi3allilo Yacy 3 OJHUM eTaJIOHOM. HeloslikaMu BEKTOPY 4acy € BifcyT-
HiCTb MOXX/JIMBOCTi aBTOMAaTUYHO BUPIllyBaTH KOHQJIIKTH, a TAKOXK 361/IbIIeHHS JOBXHUHU BEKTOPY Yacy npu
6araTopa3oBoMy oHOBJieHHi 3anucy. OgHak B NoSQL icHy10Th MexaHi3MM ypisaHHS BeKTOpy 4acy. Hampukiaz,
B cucteMi Riak MoxHa 3aZjaBaTi 4acTOTy 0Opi3aHHS BEKTOPY Ha PiBHI CErMeHTa, a TaKOXK MaKCUMaJIbHUH
po3Mip (ZoBxKHHY) BeKTOpa Yacy [4].

Active Anti-Entropy mechanism consists in detecting and correcting inconsistency. The active antientropy
process involves periodically comparing and synchronizing data between nodes to detect any differences.
This ensures that copies of data on different nodes of a distributed system always remain consistent with each
other [5].

A Merkle tree is a data structure used in distributed systems to effectively check the integrity of data in
the Active Anti-Entropy mechanism. It is created by recursively hashing pairs of data, creating a tree-like
structure where each leaf represents a particular piece of data and each non-leaf represents the hash of its
children. The highest level of the tree, known as the root node, contains a single hash value, often called the
root Merkle hash [6].

Merkle trees are often used to ensure data integrity in blockchain technologies. By comparing root Merkle
hashes between different nodes, it is possible to effectively determine whether the data between these nodes is
consistent or whether there are differences.

64 Inghopmayiimi mexnonozii ma cycninecmeo. Bunyck 3 (9). 2023

Information Technology and Society. Issue 3 (9). 2023

Bloom filter is a probabilistic data structure that is used to efficiently determine whether a certain element
belongs to a set of data. Use this filter to quickly respond to queries about the presence or absence of certain
data in a set without having to store all of that data separately [7].

One of the varieties of this data structure is the Spectral Bloom filter, which is a vector of counters. The value
of the counter increases when it is accessed accordingly. The peculiarity is that it becomes possible to add and
remove elements that have been added to the filter, unlike the classic Bloom filter [8].

Aim of the research. The main goal of the research is to present the proposed Active Anti-Entropy
mechanism for matching critical data in distributed NoSQL document-oriented databases, as existing methods
are vulnerable due to insufficient collision resistance in the context of critical data.

Active Anti-Entropy mechanism based on Spectral Bloom Filter and PH-2 algorithm. The Active Anti-
Entropy mechanism is a process that occurs in the background of a running distributed database. The essence
of the mechanism is to search for entropy and perform the process of matching data between different replicas.

The diagram of the Active Anti-Entropy mechanism using the Spectral Bloom filter and the PH-2 algorithm
is shown in Fig. 1.

Replicat AAE App1 AAE App2 Replica2

take

snapshot send
v snapshot

\ extract

L ObjectID

take
snapshot by

y ObjectiD

compare

~ send y snapshots

timestamp
p— /

timestamps

get doc 4
send

l—<ord doc |

send doc

\ document
\ compare

timestamps
y Write

Fig. 1. Scheme of operation of the proposed Active Anti-Entropy mechanism

The essence of the mechanism is that there is a constant exchange of snapshots between the nodes, which
are compared with each other. Consider the mechanism on the example of a distributed NoSQL document-
oriented database, which consists two replicas.

The first replica takes a snapshot for a particular document and sends it to another replica. When the
second replica received this snapshot, it calculates the snapshot of the same document by the document ID and
compares it with what it received. If the snapshots are the same, the second replica simply ignores the received
snapshot. In this case, this node can send a certain message to the 1st node that the data is agreed and no
additional actions are required. If the snapshots are different, the second node sends the document identifier
and the timestamp of its last modification. This is necessary so that the first node can determine which replica
stores the most recent data. If, after comparing the timestamps, it turns out that the first replica contains a
newer document, then the document is taken from it and sent to the second node. The second node receives
the document, compares the timestamps, and writes it to the database if the time of the last modification of the
local document is older than the time of the received document.

If the first replica contains an outdated document, it simply ignores that the timestamps are different
because the second node performs the same actions in parallel, providing simultaneous monitoring.

Since the exchange of messages occurs continuously, the following requirements for messages arise:

- the snapshot must be collision-resistant;

- the snapshot calculation speed should be maximum;

- the size of the snapshot should be minimal to reduce the time required for transmission between nodes
over the computer network;

Information Technology and Society. Issue 3 (9). 2023 65

Ingpopmayiiini mexnonoeii ma cycninecmeo. Bunyck 3 (9). 2023

Collision resistance is a critically important indicator, as it depends on how quickly the mechanism can
detect inconsistencies and start the data reconciliation process.

Alternatively, cryptographic hashing algorithms could be applied, but these have more security-related
properties. For consistency purposes, this is irrelevant, but can negatively affect the needs of fast computation
and size. In other words, they do not meet the second and third requirements. In this case, non-cryptographic
hashing algorithms can be used, but the issue of collision resistance remains open for them.

Another possible option is to use a spectral Bloom filter. In its classic form, it is a vector of counters that
is formed from input data. The counter is an unsigned integer. Each input block of data is hashed, a digest is
obtained and the position in the vector is calculated using it. When addressing a certain element of this vector,
the value of the counter is increased by one.

It would be advisable to use it if you change the algorithm of forming this filter and avoid usage of hash
functions. Also, it would be advisable to use such an algorithm, which would target data that in most cases is
stored in databases to increase collision resistance.

In addition to the snapshot, the message may include the operation ID, document ID, PH2 hash, and
timestamp. The structures of possible messages are shown in figures 2 and 3.

39 bytes

1 byte 24 bytes 8 bytes 6 bytes

OpCode ObjectID Spectral Bloom Filter | PH2-48 hash

Fig. 2. Structure of message to check documents

52 bytes
1 byte 24 bytes 27 bytes
OpCode ObjectID UTC Timestamp

Fig. 3. Structure of message to compare timestamps

The operation identifier is 1 byte in size and can take three values:

- if a message is sent to terminate the process, the field is set to 0;

- if a message is sent with a snapshot, the field takes the value 1;

- if a message is sent with a timestamp, the field takes the value 2.

These identifiers allow you to identify the type of message and process it in the appropriate way.

In the figures, there is an ObjectID that identifies a particular document in the database. Its size and format
depends on the database for which mechanism is applied.

Figure 3 has a UTC Timestamp, which represents the time stamp when the last changes were made to the
document. It is needed to determine the document that is newer on replicas. Its size and format can also be
represented differently and depends on the precision with which time is described. For example, you can use
a timestamp with seconds only, or you can also include microseconds or nanoseconds. Since not all databases
have a dedicated API to retrieve this value, the mechanism must store it separately, or developers must add it
to those documents that comply.

There is also a field for PH2-48 hash value, which is required to avoid collision situations. This algorithm is
sensitive to changes in the size of the input data, which makes it useful in cases where the filters are the same
when formed from different data arrays, but they are differ in size [9].

It should be noted that there is also a process termination operation when there is no need for negotiation,
but the message in this case will consist only of the operation code, which is equivalent in size to 1 byte.

The mechanism uses UDP and TCP transport layer protocols for communication, which reduces the
processing time of messages on the sender and receiver side. The use of such protocols as HTTP, HTTPs is
impractical, as it creates an unnecessary load when encapsulating and decapsulating packets [10].

66 Inghopmayiimi mexnonozii ma cycninecmeo. Bunyck 3 (9). 2023

Information Technology and Society. Issue 3 (9). 2023

The UDP protocol is used for all operations. The TCP protocol ensures reliable transmission of documents
when inconsistencies are detected. For the mechanism to work, you need to listen two ports at the same time
to ensure operation state.

Discussion of the results and conclusions. Thus, the proposed method of the Active Anti-Entropy
mechanism can solve the problem of consistency of critical data in distributed NoSQL document-oriented
databases. The next step is the implementation of this mechanism for the existing NoSQL document-oriented
database with the search for optimal means that will allow to achieve maximum collision resistance, message
calculation speed and minimize message size for less delay due to transmission by computer networks. The
implementation of such a subsystem will allow conducting experimental studies and identifying the strengths
and weaknesses of the method itself.

Bibliography:

1. Changlin H. Survey on NoSQL Database Technology. Journal of Applied Science and Engineering Innovation. 2015. 2,
50-54. URL: http://www.jasei.pub/PDF/2-2/2-50-54.pdf

2. Muniswamaiah M., Agerwala T, C. Tappert C. Performance of databases in IoT applications. 2020 7th IEEE
International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on
Edge Computing and Scalable Cloud (EdgeCom). 2020. (190-192). New York, NY, USA : IEEE. URL: https://doi.org/10.1109/
CSCloud-EdgeCom49738.2020.00041

3. K. Aguilera M,, B. Terry D. The Many Faces of Consistency. IEEE Database Engineering Bulletin. 2016. 3-13. URL:
http://sites.computer. org/debull/A16mar/p3.pdf

4. Belous R, Krylov E. TIME OPTIMIZATION OF PROCESS OF DATA CONSISTENCY IN NOSQL. Herald of the Khmelnytskyi
National University. Series: "Technical Sciences”. 2023. 3, 37-42. URL: http://journals. khnu.km.ua/vestnik/wp-content/
uploads/2023/07 /vknu-ts-2023-n3321-37-42.pdf

5. Nikitin V., Krylov E. A collision-resistant hashing algorithm for maintaining consistency in distributed NoSQL
databases. Adaptive Systems of Automatic Control Interdepartamental scientific and technical collection. 2022. 2, 45-57. URL:
https://doi.org/10.20535/1560-8956.41.2022.271338

6. Tarkoma S., Rothenberg C. Lagerspetz E. Theory and Practice of Bloom Filters for Distributed Systems. IEEE
Communications Surveys & Tutorials. 2011. 14, 131-155. URL: https://doi.org/10.1109/SURV.2011.031611.00024

7. Cohen S. Matias Y. Spectral Bloom Filters. Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data. 2003. 1-12. URL: http://dx.doi.org/10.1145/872757.872787

8. Nikitin V, Krylov E. Comparison of hashing methods for supporting of consistency in distributed databases. Adaptive
Systems of Automatic Control Interdepartmental scientific and technical collection. 2022. 1, 48-53. URL: http://asac.kpi.ua/
article/view/261646/258069

9. Al-Dhief F, Sabri N, Latiff N.,, Obaid O. Performance comparison between TCP and udp protocols in different
simulation scenarios. International Journal of Engineering & Technology. 2018.7,172-176. URL: https://doi.org/10.14419/
ijet.v7i4.36.23739

References:

1. Changlin, H. (2015). Survey on NoSQL Database Technology. Journal of Applied Science and Engineering Innovation, 2,
50-54. Retrieved from http://www.jasei.pub/PDF/2-2/2-50-54.pdf

2. Muniswamaiah, M., Agerwala, T, & C. Tappert, C. (2020). Performance of databases in [oT applications. 2020 7th IEEE
International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge
Computing and Scalable Cloud (EdgeCom), (190-192). New York, NY, USA : IEEE. Retrieved from https://doi.org/10.1109/
CSCloud-EdgeCom49738.2020.00041

3. K. Aguilera, M., & B. Terry, D. (2016). The Many Faces of Consistency. I[EEE Database Engineering Bulletin, 3-13.
Retrieved from http://sites.computer.org/debull/A16mar/p3.pdf

4. Belous, R, & Krylov, E. (2023). TIME OPTIMIZATION OF PROCESS OF DATA CONSISTENCY IN NOSQL. Herald of
the Khmelnytskyi National University. Series: "Technical Sciences”, 3, 37-42. Retrieved from http://journals.khnu.km.ua/
vestnik/wp-content/uploads/2023/07 /vknu-ts-2023-n3321-37-42.pdf

5. Nikitin, V., & Krylov, E. (2022). A collision-resistant hashing algorithm for maintaining consistency in distributed
NoSQL databases. Adaptive Systems of Automatic Control Interdepartamental scientific and technical collection, 2, 45-57.
Retrieved from https://doi.org/10.20535/1560-8956.41.2022.271338

6. Tarkoma, S., Rothenberg, C., & Lagerspetz, E. (2011). Theory and Practice of Bloom Filters for Distributed Systems.
IEEE Communications Surveys & Tutorials, 14, 131-155. Retrieved from https://doi.org/10.1109/SURV.2011.031611.00024

7. Cohen, S., & Matias, Y. (2003). Spectral Bloom Filters. Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, 1-12. Retrieved from http://dx.doi.org/10.1145/872757.872787

8. Nikitin, V., & Krylov, E. (2022). Comparison of hashing methods for supporting of consistency in distributed
databases. Adaptive Systems of Automatic Control Interdepartmental scientific and technical collection, 1, 48-53. Retrieved
from http://asac.kpi.ua/article/view/261646/258069

9. Al-Dhief, F, Sabri, N., Latiff, N.,, & Obaid, 0. (2018). Performance comparison between TCP and udp protocols in
different simulation scenarios. International Journal of Engineering & Technology, 7, 172-176. Retrieved from https://doi.
org/10.14419/ijet.v7i14.36.23739

Information Technology and Society. Issue 3 (9). 2023 67

