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LAMBDA CALCULUS TERM REDUCTION: EVALUATING LLMS' PREDICTIVE CAPABILITIES

Abstract. This study is part of a research series of optimizing compilers and interpreters of functional programming
languages. Lambda Calculus was chosen as the most straightforward functional programming language, which can process
any operation available to other functional programming languages but with the simplest syntax. Using machine learning
methods allows for uncovering relations inside lambda terms, which might indicate which reduction strategy better suits their
reduction. Finding those techniques for lambda terms allows optimizing not only lambda term reduction but also interpreters
and compilers of functional programming languages.

This research aims to scrutinize LLMs' understanding of Lambda term reduction to predict reduction steps and evaluate
prediction accuracy. Artificially generated Lambda terms were employed Utilizing OpenAl's GPT-4 and GPT-3.5 models.
However, due to model constraints and cost considerations, experiments were limited to terms with specific token counts.

Despite its larger size, results revealed that the GPT-4 model did not significantly outperform GPT-3.5 in understanding
reduction procedures. Moreover, while the GPT-3.5 model exhibited improved accuracy with reduced token counts, its
performance with more complex prompts was suboptimal. This underscores the LLMs' limitations in grasping Lambda terms
and reduction strategies, especially with larger and more intricate terms.

Conclusions. The research concludes that general-purpose LLMs like GPT-3.5 and GPT-4 are inadequate for accurately
predicting Lambda term reductions and distinguishing between strategies, particularly with larger terms. While fine-tuning
may enhance model performance, the current findings highlight the need for further exploration and alternative approaches
to achieve a deeper understanding of lambda term reduction using LLMs.
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Onekcanap JEWHEIA. PEAYKUIA TEPMIB JIIMBJA-YUC/JEHHA: OIIIHKA MPOTHO3MBHHUX
3IATHOCTEM LLM

Anomayis. lle docaidxcenHsi € yacmuHol cepii docaidyiceHb onmumizayii komninssmopie ma iHmepnpemamopie
@YHKYiOHANbHUX MO8 npozpamy8aHHs. JIambda-4ucaeHHs 6y/n0 06paHo K Hatinpocmiuly Mosy GyHKYIOHAAbHO20
npoepamysaHHsi, ska Modice 06pobasimu 6ydv-ski onepayii, docmynHi iHwum Mo8am PyHKYIOHAILHO20 NPO2PAMYBAHHS, A€
3 HallnpocmiwuMm cuHmakcucom. BukopucmaHHs memodie MAWUHHO20 HABYAHHS 00380.151€ 8USABUMU 38°S3KU 8CepeduHi
Aam60a-mepmis, SIKI MO*Cymov ekasamu, sska cmpameeisi pedykyii kpawe nidxodums das ix Hopmanaizayii. [lowyk yux
Memodie 0415 Asim60a-mepmie 00380/51€ onmumizysamu He miabKu pedyKyiro As1m60a-mepmis, ase ii inmepnpemamopu ma
KomMninsgamopu pyHKYiOHAbHUX MO8 NPO2PAMYBAHHSL.

Mema. lle docaidxncenHs mae Ha memi susyumu sik LLM po3ymie asim60a-mepmu, 045 Yybo2o nepedbavumu Kpoku pedyKyii
ma oyiHumu mo4Hicme nepedbayeHs. Bukopucmosyeaaucs wmy4Ho cmeopeHi AImM60a-mepmMu 3 8BUKOPUCMAHHAM MoOdesell
OpenAl GPT-3.5 i GPT-4. O0Hak yepe3 06MesiceHHs Modesell ma MipKy8aHHs ujodo eapmocmi ekcnepumenmis 6yau o6MesxiceHi
mepmamu 3 Ne8HOI0 KI/IbKICIMIO MOKEHI8.

Hessavicarouu Ha 6iabwutl po3mip, pezyabmamu nokasaau, wo mooeab GPT-4 HesnauHo nepesepwuaa GPT-3.5y po3yminni
npoyecy pedykyii. Kpim moeo, y moti uac sik modenv GPT-3.5 npodemoHcmpysasa nidsuwjeHy moyvHicmb i3 3MeHWeHOo
Ki/lbKicmto mokeHis, if npodykmueHicmb i3 6i1bWw ckaadHUMU mepmamu Gyaa HeonmumaabHow. Lje nidkpecaioe obmexceHHs:
LLM y po3yminHi assm60a-mepmis i cmpamezitl CKOpOUeHHS, 0C061UB80 3 BiNbWUMU MA CKAAOHIWUMU MePMaAMU.

BucHoeku. /[locaidxceHHs1 nokasye, wjo LLM 3azasnbHo20 npusHauveHHsi, maki sk GPT-3.5 i GPT-4, HedocmamHi 04
MOYHO20 NPO2HO3YBAHHS CKOPO4eHb ASIMO0a-mepmie | po3pisHeHHA cmpameeill, 0co6.1u80 3 6inbwumu mepmamu. Xo4a
moyvHe HAAAWMY8aHHS Moxce nidguwumu npodyKmueHicms mModei, NOMOoYHI pe3yabmamu hidKpecawms HeobxidHicmb
nodabwo2o 00CAIOHCEHHS MA a1bmepHamusHUX nidxodie 0451 00cs2HeHHs 2AUOW 020 po3yMIHHS pedykyii 1amboa-mepmy
3a donomoeoro LLM.

Kawouosi cioea: J/Iamb6oa-yucaenns, Beauka Mosua Modesw, npoyec pedykuyii, iHsceHepiss npomnmy.

Introduction. Our research aimed at optimizing functional programming compilers and interpreters. For
this purpose, we considered Lambda Calculus the most straightforward possible representation of functional
programming languages [1]. Lambda Calculus allows the execution of its programs called terms as the
expression reduction process. The lambda terms can be divided into Applications, Abstractions, and Variables.
The term reduction is possible using redexes, special combinations of Abstract, and any other term inside an
Application. Some terms may contain more than one redex, and choosing a specific redex by some rule defines
areduction strategy. The most famous reduction strategies are the normal order or the leftmost outermost (LO)
strategy and the applicative order or the rightmost innermost (RI) strategy. An example of the Y term is shown
in Figure 1. The example describes all lambda term elements and the RI and LO strategies.
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Fig. 1. Example of the Y term, applying the rightmost innermost
and the leftmost outermost strategies and showing term types

Research in the Lambda Calculus reduction process may help optimize the interpretation and compilation of
other function programming languages using similar optimization techniques [2]. Understanding the Lambda
terms reduction process may help uncover essential features and methods of discovering strategy priorities.

Analysis of recent research and publications. Usually, reduction steps are estimated as equal [3], which
allows comparison of reduction strategies via a simple number of reductions. In the research [4], we considered
another approach to estimating reduction steps via their computational efficiency, which allows us to develop a
greedy strategy that minimizes computational resources required for reduction. Although this approach enables
estimating computational resources needed for single-step normalization, it does not allow us to understand
the relation between specific terms and strategies that better suit its normalization.

The problem of measuring term complexity was considered in the studies [5, 6], where memory consumption.
Also, cost models were proposed in the article [7] to solve the same problem. All works show that it is possible
to define the complexity of reduction steps via different approaches.

The research [8] considers using the Transformer models for sequential analysis of lambda terms for
predicting the type of term in Typed Lambda Calculus, which simply extends Lambda Calculus with defining
types via specific terms without modifying the expressions lexicon. This usage highlights the idea that extracting
particular term features that indicate its type is possible. That idea can be extended to the strategy priority, and
in the research, [9] was considered to estimate the reduction steps number for the RI and the LO strategies.
However, research [9], due to computational limitations, considers only simplified term representation, which
does not count variable information. The study [9] results show that this approach allows accurate identification
of reductions if the expected number is less than 10, but for bigger expected numbers, the accuracy drops.

Studies [2, 10] solved the problem of losing variable information with more complex pretrained machine
learning models, namely Microsoft CodeBERT [11] and OpenAl [12] embedding models. Those studies used
vector representations of lambda terms created with Large Language models (LLM) and uninformed Machine
Learning techniques to find the relation between collected vectors and the most suitable reduction strategy.
The main issue with the studies [2, 10] is using pretrained models on programming languages or for general
problems. It does not provide information about LLMs' understanding of lambda terms.

Also, recentresearch has shown promising results with the implementation of LLMs for solving mathematical
problems [13], code execution [14], and compilation optimization [15]. All such works show that it is possible
to use LLMs as a discovery tool for code-related tasks, but no one has checked how good general tasks LLMs are
for understanding lambda terms.

The research objective is to investigate LLM's understanding of the lambda term reduction process.
Achieving this objective can be highlighted in the following tasks:

1. Prepare a lambda terms dataset containing the following reduction step term for the selected strategies.

2. Predict the following reduction step using the selected strategy, general LLM, and prepared terms.

3. Calculate the accuracy of such predictions and conclude that LLMs can be used to understand lambda
term reduction and strategy differences.

Scientific novelty. For the first time, the ability of LLM to understand lambda calculus was investigated.

Research methodology. The research is considered one of the biggest publicly available general task LLM
models, developed and trained by OpenAl: the GPT-4 and GPT-3.5 models [16]. Table 1 shows the considered
models, their weights number, and price per million tokens [16].

Table 1
Comparison of the GPT-3.5 and GPT-4 models
Model name | Weights Number Price of input per million tokens Price of output per million tokens
GPT-3.5 ~20 Billion 0.50% 1.50%
GPT-4 ~220 Billion 30.00% 60.00%
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In this research, artificially generated lambda terms were used. The procedure for generating those terms was
described in the study [9]. Accordingly to the procedure, with some probability, choose the next term element
(Application, Abstraction, or Variable from a set of available variables), which recursively builds a term. This
procedure allows consider the maximum available terms in the selected bound of variables and probabilities of
elements. This research uses the same terms dataset used in previous studies [2, 10]. However, considering price
limitations, the number of terms used for testing decreased, considering the number of input and expected output
tokens. The results of such data preparing shown in Table 2. Although the number of terms used in experiments
has significantly shrunk, there are still enough terms to check the proposed LLM's ability to understand the
reduction process with differing strategies. Also, shown LLMs require special text descriptions, called prompts,
for problem statements, which a LLM must solve. The prompt size also increases the number of required input
tokens for each term, and depending on the prompt, it can increase the number of expected output tokens

Table 2
Results of term dataset preparing
Original Cropped Cropped
dataset to 77 max tokens per term to 40 max tokens per term
Terms number 4282 1019 305
Input tokens 523k 52k 8k
Expected output LO tokens 503k 45k 6.4k
Expected output RI tokens 521k 45k 6.4k

Considering the analysis of available GPT models' price and weight numbers and the concluded size of
datasets, it is possible to define the methodology of experiments:

1. Prepare prompts for predicting the LO / Rl steps using the GPT-3.5 / GPT-4 models.

2. Using prepared prompts, predict the following reduction step using the selected model (use for prediction
cropped dataset to 77 tokens per term with GPT-3.5 and cropped to 40 tokens — GPT-4 model).

3. Postprocces predictions to formulate actual term answers.

4.Using the Lambda Calculus interpreter, the expected following terms are compared with actual predictions.

Results of research. The first stage of the study requires preparing a prompt. There are a few prompt types
[17]: some require detailed descriptions of solved tasks, some require examples of solving, and others require
simply asking about the task. Due to the high price of using the GPT-4 model, the simplest approach was chosen.
On another site, the GPT-3.5 model was considered a few approaches.

f*""Given the lambda term, apply the leftmost-outermost (LO) strategy to perform the next step of reduction.

The LO strategy, also known as normal order reduction, prioritizes the reduction of the leftmost-outermost redex first,
This means that if there's a choice between reducing an expression inside a lambda abstraction or an application outside,
the application takes precedence unless there's no other redex outside the abstraction.

Lambda Calculus Reduction Rules:

1. Alpha Conversion {a-conversien): Rename bound variables, ensuring no variable name conflicts.
This step is essential for avoiding collisions between variables.

2. Beta Reduction (B-reduction): Apply the function to its argument.
The formal rule is ({Xx.M) N) = MIx:=N], where M{x:=N] denotes substituting N for x in M.

3. Eta Conversion (n-conversion): Simplify functions with unnecessary abstractions. The rule is Ax.(M x) - M if x does not appear in M.
Prioritization in LO Strategy:

- Dutermost First: Reduce the outermost redex before amy inner redexes, even if the inner one is to the left of an outer one.
= Leftmost First: When faced with multiple outermost redexes, choose the leftmost one.

Examp les :

- Given (Ax.x x) [(Ay.y) 2), the LO strategy first reduces the cutermost leftmost redex, resulting in (Mx.x %) z.
- For {(dx.Ay.x y) (Aa.a}} b, the first step of reduction under LO stratégy would yield (Ay.(Aa.a) y) b.

Procedure:

- Identify the leftmost—outermost redex in the term.
- Apply the appropriate reductien rule based on the structure of this redex.
- If multiple steps are available, choose the one that aligns with the LO strategy's prioritization.

Take your time to analyze the term <<<{str_term}»». Consider each part of the term carefully and apply the reductiom rules as described.
Remember to use w-conversion to avoid wvariable naming conflicts, especially when dealing with nested lambda expressions.
In the end provide the next reduction term in format: Result: next step term

Fig. 2. Using the description prompt, the GPT-3.5 model generates the following term according
to the LO strategy
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f'""Example of performing task #1:
Given term: (Ax.((Ay.({Az.z) x)) (Aa.a))). Provide the next step of term reduction

Your output:

1. Identify the leftmost-outermost redex in the given term: ((Ay.((Az.z) x)) (Aa.a))
1.1. Where object of the redex is (Ay.{(Az.z) x)) (Aa.a)

1.2. And subject of the redex is

2. Apply B-reduction: {(Ay.((Az.z}) x)) (Aa.a)) [x:= (ha.a)l

3. Result: (Ay.((Az.z) (Aa.a)))

Example of performing task #2:
Given term: ({((Ax.x)} (Ay.(y (Az.z)))) (Aa.a)). Provide the next step of term reduction.

Your output:

1. Identify the leftmost-outermost redex in the given term: (((Ax.x) (Ay.(y (Az.z)))) (Aa.a))
2. Apply B-reduction: {(Ay.(y (Az.z))) (Aa.a)) [xi= (Ay.{y {Az.z}})]

3. Result: ((Ay.(y (Az.2))) (Aa.a))

Given term: {str_term} Provide the next step of term reduction using example.

Your output:

Fig. 3. Using the detailed step prompt, the GPT-3.5 model generates the following term according
to the LO strategy

Franm
Please generate the next step of reduction a Lambda Calculus term. Prowide only term expression.

Lambda term: *''{str_term}'"'

......

Fig. 4. Using the simplest command prompt, the GPT-4 model generates
the following term according to the LO strategy

Figure 2 shows an example of the description prompt used for the GPT-3.5 model, Figure 3 shows an
example of the detailed step prompt used for the GPT-3.5 model, and Figure 4 shows an example of the simplest
command prompt used for the GPT-4 model. All shown prompts are used for the LO strategy, but the prompt for
the RI strategy differs only in the description of the RI strategy, but the logic is kept the same.

Table 3
Accuracy of the following step predictions with the GPT-3.5 and GPT-4 models
GPT-3.5to LO | GPT-3.5to LO | GPT-3.5toRI | GPT-3.5toRI | GPT-4 to LO GPT-4 to RI
(77 tokens) (40 tokens) (77 tokens) (40 tokens) (40 tokens) | (40 tokens)
Description 9.5% 23.6% 6.47% 17.04% - -
prompt
Detailed step 4.0% 10.82% 3.0% 9.83% - -
prompt
Simplest 10.0% 27.21% 3.23% 9.83% 41.3% 36.39%
command prompt

Table 3 shows all the experiments. Due to the high price of GPT-4 model generation, only the simplest
command prompt and terms with a maximum of 40 tokens were considered, which showed the best results
with the GPT-3.5 model. Experiments with the GPT-3.5 model were considered terms with a maximum of 77
tokens; 40 token results were extracted from the collected results.

Discussion. Low accuracy on more complex prompts (description and detailed step) might indicate
overloading the model with redundant details. Also, increasing accuracy with a decreasing maximum number of
tokens shows that the GPT-3.5 model cannot profoundly analyze and understand lambda terms. Real programs
can contain hundreds of variables, which is a big problem to analyze. A drop in accuracy of 5-7% on prediction
following terms for the RI strategy compared to the LO can be explained by the fact that GPT-3.5 and GPT-4
models do not wholly understand the redex and reduction strategy concept. However, the most significant
accuracy for predicting the following RI term was achieved using the description prompt, indicating that LLMs
can improve their redex understanding, but it depends on prompt construction.
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The 10% difference between the best results achieved on GPT-3.5 and GPT-4 indicates that increasing the
number of model weights doesn’t significantly improve understanding of the reduction procedure. However,
the GPT-4 model was the closest to accurate results.

This research benefits from showing that general task LLMs are unsuitable for predicting the following term
step. Fine-tuning techniques can improve such models but with more affordable ones.

The research disadvantages are not uncovering all possible experiments on the GPT-4 model with different
prompts due to the high generation price, using alimited number of tokens in experiment terms, and considering
only OpenAl models. Considering these disadvantages, the following research step could fine-tune some LLM
for more accurate results.

Conclusions. The results of the research were solved in the following tasks:

1. A lambda terms dataset has been prepared considering the limitations of selected LLM models. The
prepared dataset allowed to check how selected models understand lambda calculus reduction and the
difference in strategies by selecting two reduction strategies (LO and RI).

2. The following reduction steps were predicted using GPT-3.5 and GPT-4 models. The predictions were
cleaned to check their reliability.

3. Using the Lambda Calculus interpreter, the predictions' results were compared to expected terms, which
allowed the predictions to be calculated accurately. The applicability of GPT-3.5 and GPT-4 was examined,
and it was concluded that selected LLMs are insufficient to understand lambda term reduction and strategy
differences, especially on larger terms.
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