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THE ROLE OF MLOPS IN ADVANCING GREEN ENERGY:
AN EVALUATION OF TECHNOLOGIES AND PRACTICES

Abstract. Machine learning-driven decision making is essential for the efficient operation of cloud-hosted virtual power
plants (VPPs) aggregating hundreds to thousands of distributed energy resources (DERs). However, manually deploying and
maintaining ML models at scale introduces delays, inconsistency and high operational overhead. In this paper, we survey six
widely adopted MLOps frameworks-Kubeflow, Apache Airflow, MLflow, Azure ML, AWS SageMaker and Google Vertex Al-
against four criteria critical to VPP environments: industry adoption, feature-set completeness, interoperability with major
ML frameworks and cloud platforms, and licensing or cost constraints. Drawing on public documentation, repository activity,
case studies and market research, we identify trade-offs between open-source flexibility and managed-service convenience.
Our analysis shows that Apache Airflow offers the most mature and extensible pipeline orchestration for on-premise and
multi-cloud VPP deployments, while Kubeflow excels in Kubernetes-native contexts. Managed services like SageMaker and
Azure ML deliver faster time-to-value for teams lacking dedicated infrastructure expertise but incur higher costs and vendor
lock-in. Finally, we provide domain-tailored recommendations for integrating continuous training, evaluation and monitoring
into VPP forecasting workflows, demonstrating how MLOps adoption can improve prediction latency and grid responsiveness.

The goal of this article is to evaluate and compare leading MLOps frameworks-open-source and managed cloud services-
against key criteria (adoption, feature completeness, interoperability, and cost) and to recommend the most suitable solutions
for cloud-hosted virtual power plants.

Methodology. We selected six MLOps frameworks based on adoption, features, interoperability and cost; extracted
data from official docs, repositories and market reports; scored each tool against our criteria; and distilled domain-specific
recommendations for cloud-hosted VPPs.

Scientific Novelty. This article explores the under-researched intersection of MLOps and virtual power plants (VPPs),
addressing the specific challenges of applying automated ML workflows to large-scale, cloud-hosted VPP systems. It provides
the first domain-specific comparison of MLOps tools tailored to the operational and forecasting needs of VPPs.

Conclusion. MLOps can significantly enhance the performance and scalability of virtual power plants. This study identifies
the most suitable tools for VPP use cases, highlighting Apache Airflow and Kubeflow as strong open-source options, while
managed services may suit teams with limited infrastructure expertise.

Key words: Machine learning, MLOps, Virtual power plant, Distributed energy, Cloud technology, Forecasting.

Aptem KOJIOMUIIEB, I01is KY3HEL[OBA. POJIb ABTOMATH3ALIT PO3TOPTAHHA IHOPACTPYKTYPHU
Y MIPOCYBAHHI 3EJIEHOT EHEPTETUKHU: OLITHKA TEXHOJIOT'TA TA TPAKTHUK

AHnomayis. IpuiiHsamms piwleHb Ha OCHOBI MAWUHHO20 HABYAHHS MAE 8AMCAUBE 3HAYEHHs1 0151 epekmugHOi poGomu
XMapHux gipmyaavHux esekmpocmanyiii (BEC), wo 06'edHytoms comHi ti mucsiui posnodinenux enepeopecypcie (PEP). Odnak
pyUHe po320pmaHHa ma niompumka modenell MaQWUHHO20 HABYAHHS 8 Macuwma6i npuzeodums do 3ampuMoK, Hey3200HCeHO-
cmi ma sucokux onepayitiHux eumpam. Y yiti cmammi Mu npoaHa.izyeanu wicms Wupoko po3noagcrodiceHux gpelimeopkis
asmomamu3ayii pozeopmanHi iHgpacmpykmypu mawurHozo Hag4yaHHs1 (MLOps) - Kubeflow, Apache Airflow, MLflow, Azure
ML, AWS SageMaker i Google Vertex Al - 3a vomupma Kpumepisimu, KpUmu4yHo saxcausumu 04s cepedosuwy BEC: enposa-
0JiceHHs 8 2ay3i, nogHoma Habopy @yHKYill, cymicHicmb 3 0CHOBHUMU PpeliMBOpKAMU MAWUHHO20 HABYAHHS | XMAPHUMU
naamgopmamu, a makoic AiyeH3itiHi abo pinaxcosi obmexnceHHs. Cnuparyucs HA ny6aiyHy doKymMeHmayilo, akmueHicmos
peno3zumopiie, memamuyHi docaidxceHHss ma 00cAiOHceHHs PUHKY, MU BUSHAYUAU KOMNPOMICU MiHC 2HYyHKICMIo 8I0Kpumozo
Kody ma 3pyuHicmio kepogaHozo cepgicy. Haw aHasiz nokasye, wjo Apache Airflow nponoHye Hali6inbw 3piay ma po3wupio-
8aHy OpKeCmpOoB8KY KOHBe€EpI8 0151 10KAIbHUX Ma MyAbmuxmapHux poszopmaus BEC, 8 motil uac sk Kubeflow uydoeo npayre
8 koHmekcmax Ha 6a3i Kubernetes. KeposaHi cepsicu, maki sik SageMaker ma Azure ML, 3a6e3neuytoms weuduly OKynHicmos
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iHeecmuyiil 019 KoMaHo, AKUM He sucmavae cneyiaaicmis y eanysi inppacmpykmypu, ase Hecymso 6inbwi sumpamu ma
npug’'sizky do nesHozo nocmavaavHuka. Hapewmi, mu Hadaemo pekomeHdayii wjodo iHmezpayii 6eanepepsHO20 HABYAHHS,
OYiHKU ma MoHimopuHzy 8 po6oui npoyecu npoeHozyeaHHss BEC, demoncmpyiouu, sik enposadyiceHHs: asmomamu3sayii pos-
20pmaHHI iHppacmpykmypu MAWUHHO20 HABYAHHS MOXCe NOKpawumu 3ampuMKy npoz2HO3y8aHHs1 ma weudkicms peazy-
B8AHHSA MeEpeixCL.

Mema cmammi: oyiHumu ma nopisHssmu nhpogioHi gppetimeopku asmomamuszayii poszopmarHi iHppacmpykmypu ma-
WUHHO20 HABYAHHSA — 8i0KpumMi ma KkepoeaHi xMapHi cepgicu — 3a KA10408UMU Kpumepisimu (6nposadiceHHs, noeHoma PyHk-
yitl, inmeponepabeavHicme ma eapmicms) ma pekomeHdysamu Halibinbw nioxodswji piwieHHs1 045 8ipmyanbHUX eseKmpo-
cmaHyiti, po3miwjeHux y xmapi.

Memodoso0zisi. Mu o6paau wicms gpelimeopkie asmomamusayii po3zopmarHi iHppacmpykmypu MAwUHHO20 HABYAH-
Hs1 Ha OCHO8I 8npogadiceHHs1, yHKYil, cymicHocmi ma eapmocmi; gumsieau dawi 3 oiyitiHux dokymeHmis, penosumopiie ma
PUHKOBUX 38Imi8; OYIHU/AU KOXHCeH IHCmpyMeHm 3d HaAWUMu Kpumepiamu; i cpopmyarsanu pekomernoayii 15 xmapHux BEC
04151 KOHKpemHux domeHie.

Haykoea Hosu3Ha. Y yiti cmammi docaidxcyemuvcst ManodocaidsiceHa chepa nepemuHy asmomamusayii pozzopmaHHi
iHpacmpykmypu MawuHH020 HABYAHHS | 8ipmyasbHUx esekmpocmaryiil (BEC), pozeasidarombcst KOHKpemHi npob.iemu 3a-
CMOCY8AHHSI A8MOMAMU308aHUX POGOHUX Npoyecie MAWUHHO20 HA8YAHHS 00 8eaukomacwmabHux xmapHux cucmem BEC.
L]e nepwe nopisHsiHHs IHCMpyMeHmie aemomamusayii pozzopmauHi iHgpacmpykmypu MawUHHO20 HAB4AHHSI, NPUCMOC08d-
HUx do onepayitiHux i npozHo3HuUXx nompe6 BEC, 3 ypaxyeaHHsaM cneyugdiku KOHKpemHoi eaaysi.

BucHogku. Y pesynrbmami docaidxceHHs1 dogedeHo, Memodu asmomamu3ayii poszopmaxHi iHgpacmpykmypu MauwuHHo-
20 HABYAHHS1 MOJHCYMb 3HAYHO nidsuwumMuU NpodykmugHicmo i Macwma6o8aHicms 8ipmyaabHUX e1eKmpocmaHyiil. Y ybomy
docnidxceHHT 8U3Ha4eHo Hatlbinbw nidxodsawi iHcmpymenmu 045 sukopucmanHs BEC, 3okpema Apache Airflow ma Kubeflow
5K CU/bHI 8apiaHmu 3 8idkpumum suxioHum kodoM, modi sIK KeposaHi cepgicu Moxcymbu niditimu komaHdam 3 06MeHceHUM
doceidom pobomu 3 iHgpacmpykmyporo.

Kawouosi cn1o0ea: mawuHHe HABYAHHS, agmomamu3ayis po320pmaxHs iHgpacmpykmypu, 8ipmyaibHa esAeKmpocmaH-
yis, poanodizeHa eHepaemuka, XMapHi mexHo.102ii, NpO2HO3Y8AHHSL.

Introduction. The market for renewable energy is experiencing substantial expansion and is rapidly accelerat-
ing. Virtual power plants (VPP) are one of the next logical steps in electrical grid development [8; 13] and they are
one of the best ways to integrate renewable energy into the grid, especially residential renewable energy produc-
tion and storage (like rooftop solar panels and rechargeable lithium-ion wall-mount batteries). A single VPP can
manage multiple (hundreds-thousands) distributed energy resources (usually connected to the same grid), which
allows them to have a bigger impact on the energy market and better financial gain [13], if compared to those DERs
accessing the market on their own. VPP collects telemetry from and sends control commands to those DERs.

VPP decisions can be based on various optimisation strategies, but often those strategies are implemented
using machine learning [16; 17]. In many companies (especially early-stage startups) ML models are usually
managed and deployed by data science engineers manually, which is a slow and error-prone process [3]. The
software development industry has already solved a similar problem by automating operations using Dev-
Ops methodology, and an identical approach can be applied to ML [15]. ML Operations (usually shortened to
MLOps) is the automation of ML model learning and deployment processes. According to [3] the principles of
MLOps include CI/CD pipeline automation, workflow automation, reproducibility, versioning, collaboration,
continuous ML training and evaluation, and continuous monitoring. A system that follows MLOps principles
may consist of multiple components that allow it to achieve those principles.

ML application in VPP has its caveats: ML models should be able to make predictions fast [15] because
VPP must be able to continuously send commands to thousands of DERs, and conditions are always changing:
wholesale electricity market prices, weather conditions and forecasts, user energy consumption patterns etc.
Some configurations of VPP involve running ML models on DER controllers as IoT edge software [10], but this
article does not cover such case - it has additional pitfalls and issues: unreliable network connection [19] on the
DER side leads to model not having recent market and weather forecast data, [oT edge hardware capabilities
are usually limited, so ML model should be simplified [10] (which decreases predictions quality).

Research question: Evaluate existing MLOps technologies and choose those best fitting to be used in a VPP.

Method.

Related work. We analyzed existing publications on the subject and came to the conclusion that there is a
scarcity of publications focusing on MLOps applications in the VPP field.

MLOps. Research regarding MLOps has been going on actively for the past few years. Kreuzberger, Kiihl
and Hirschl [3] have a very detailed definition of MLOps and a list of relevant technologies for each MLOps
component but do not discuss domain-specific recommendations and do not actually compare/select the best
technologies. Other relevant publications [9; 12] also lack domain-specific issues discussions and limitations.

ML in a renewable energy sector. Implementation of ML models for renewable energy forecasting and
software-controlled distributed energy resources is a prominent topic and multiple publications discuss this
issue from various angles [15; 16; 17] even considering applying MLOps approach [15], but they do not specif-
ically cover MLOps application to a VPP.
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ML in edge IoT. Multiple software and hardware solutions exist to run (and even retrain) ML models on
the edge [4; 10], but this area has a list of very specific issues and a different set of issues if compared to a VPP,
which is usually backend solution running on public cloud [10; 19] and talking to DERs via REST APIs of their
respective vendors [5; 7]. This article does not cover ML on edge IoT use-case and problems, but the authors
agree that this may be one of the ways to implement a VPP.

Selection Criteria. The comparison in the article mostly focused on workflow/pipeline automation tools
for ML, excluding optional aspects like Feature Store and automatical triggers for training new models on per-
formance degradation. These tools could be added to ML workflow later, as they are less important and should
be built on the foundation of a solid automated ML training pipeline [9].

After going through the mentioned articles, online-accessible documentation [1; 11; 18] hosted by public
cloud providers six tools were selected for comparison.

Inclusion criteria:

1. Adoption - The tool must be already adopted and used in the industry, successful case studies should exist
for it. Integration of a new unproven solution into the platform may be difficult, because of a lack of documen-
tation and features [14]. Good adoption also usually means it’s easier to hire expertise.

2. Feature set — the more parts of the MLOps pipeline can be covered by the same toolset/framework, the
fewer new dependencies the project would need to maintain.

3. Interoperability - what ML framework tool supports, what cloud provider integrations exist out of the
box, etc.

4. Licensing and cost - is it an open-source solution that can be self-hosted or closed-source privately owned
solution only available on vendor’s cloud?

Exclusion criteria:

1. Obsolete tools - tools that are no longer maintained or replaced.

Evaluation Framework. Open source tools would be compared on initial configuration and maintenance
cost, license limitations, public cloud feature integrations suite, and feature completeness.

Official documentation, public git repositories and market research tools (6sense) were used to estimate
each metric's value.

Limitations. The Availability of existing case studies of MLOps applications in the VPP market is limited, so
some metric values were approximate estimates.

This article does not evaluate the ease of implementation for an edge IoT MLOps solution, mostly focusing
on VPP that works as a hosted backend solution on the public cloud.

Results.

Table 1 contains the final results for the comparison based on selected metrics.

Table 1
MLOps tools comparison
Name Adoption Feature set Interoperability Licensing & cost
Kubeflow 3 4 1 1
Airflow 1 1 1 1
MLFlow 2 1 1 1
Azure ML 4 2 1 3
AWS SageMaker 5 2 1 3
Google Vertex Al 7 2 1 2

Fig. 1 shows heatmap representing the scores.

Fig. 2 shows normalized comparison of selected MLOps frameworks.

Adoption. Each column contains a place in which a corresponding tool would fit in sorted based on the
selected metric (lower is better).

For open-source tools adoption was estimated based on development activity on publicly hosted Git repos-
itories [6]. Airflow is the most mature of the selected subset of MLOps automation tools and is still the most
popular and actively supported.

For closed-source tools hosted on public cloud 6sense [2] estimates were used. Azure ML is almost twice as
popular as AWS Sagemaker as as of this writing. Google Vertex Al was launched a few years later than all of the
above tools and market adoption data for it is not yet available, so the authors assume the worst adoption for it
in comparison to other tools from the list.

ISSN 2786-5460 (Print), ISSN 2786-5479 (Online) 85



Inghopmayiiini mexnonoeii ma cycninecmeo. Bunyck 2 (17). 2025

MLOps Platforms Heatmap (Lower is Better)

Kubeflow
6
Airflow E
5%
E#]
MLFlow A
4%
=
Azure ML ]
3¢
=
AWS SageMaker It
2
Google Vertex Al
1

Fig. 1. Heatmap of scores
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Fig. 2. Normalized comparison of MLOps frameworks

Feature set. Each column contains a place in which a corresponding tool would fit in sorted based on the
selected metric (lower is better). Duplicate values represent equal/comparable feature sets.

Airflow and MLFlow are very mature open-source tools and any MLOps-related feature we might need (par-
ametrised training, integration with orchestrators like Kubernetes etc) are implemented.
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Azure ML, AWS SageMaker and Google Vertex Al have better integration with their respective cloud, but this
leads to worse support for on-premise workloads or workloads on other cloud providers.

Kubeflow is very actively developed and mostly covers the use-case of training models in Kubernetes-man-
aged environment. It’s the easiest one to configure on an existing Kubernetes cluster, but if your environment is
not running in Kubernetes orchestrator Kubeflow would be useless for you.

Interoperability. All listed MLOps pipeline automation tools support all major frameworks like TensorFlow
and PyTorch.

Licensing & cost. Open-source tools allow you to use them free in commercial environments.

When comparing closed-source tools, Google Vertex Al is yet the cheapest to train models on.

Recommendations. Based on the results, the authors of the article recommend using Apache Airflow for
most of the MLOps VPP use-cases.

If your environment is completely containerized and orchestrated by Kubernetes Kubeflow could be a good
solution, but it's less mature than Airflow and Airflow can be run natively in the Kubernetes on its own.

Azure ML, AWS SageMaker and Google Vertex Al support less features and would be more expensive to host.
They should be considered in organisations that do not have mature ops/infrastructure engineering teams that
could maintain the MLOps pipeline on their own.

Limitations of Results. Market adoption was not measured based on real telemetry from production sys-
tems, but just an estimate.

All metrics were selected without any VPP specificity, albeit authors believe these metrics are the most im-
portant in most of the MLOps applications including VPP.

Adoption Barriers and Facilitators. MLOps adoption is mainly slowed by:

@ organisational challenges (pure data-science driven team would not be able to achieve MLOps on their
own, cross-functional team is required [3]);

@ cost (ML is already an expensive endeavour for small or even medium-sized companies and pipeline au-
tomation might not be worth the cost for many of them if data-science team is small enough).

But, MLOps adoption can be accelerated by increased awareness and new easier to use tooling being built to
abstract existing complexities of MLOps pipelines.

Conclusion. VPP would greatly benefit from MLOps integration, it would improve ML models' efficiency
and decision-making processes. But, even considering these benefits MLOps is not yet widely used in VPP. It’s
mostly caused by the operational complexity of such tools and the cost of their introduction.

Multiple open and closed source tools exist to solve MLOps pipeline automation problems, and most of them
cover all major features and support main frameworks.

Different MLOps tools have different limitations and their selection should be based on market adoption,
feature set and interoperability with ML frameworks your organisation uses.

Open-source tools like Airflow or MLFlow would be best for most use cases, but their usage requires having
a cross-functional data science/operations team. In some organisations it might not be a great fit and cloud-pro-
vider tools like AWS SageMaker or Azure ML should be used.

As VPPs continue to advance and assume a more critical role in renewable energy integration, the strategic
application of MLOps will be vital.
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