Information Technology and Society. Issue 2 (17). 2025

UDC 004.438.52:004.415.3:004.421.2
DOI https://doi.org/10.32689/maup.it.2025.2.26

Oleh SYPIAHIN

Master’s Degree, Information Security,
Full Stack Engineer, floLive (Israel),
fed4wet@gmail.com

ORCID: 0009-0008-7565-3221

Dmytro POLTAVSKYI

Bachelor’s Degree,

Engineering Team Lead, Uplandme Inc. (USA),
poltavskyi.dmytro@gmail.com

ORCID: 0009-0009-0387-6677

Roman MARTYNENKO

Master’s Degree,

Senior Software Engineer, Henry Al, Inc. (USA),
worldofwbdesign @gmail.com

ORCID: 0009-0005-4663-8530

EXPLORING THE ADVANTAGES AND LIMITATIONS OF THE FEATURE-SLICED DESIGN
ARCHITECTURAL METHODOLOGY IN COMMERCIAL FRONTEND PROJECTS

Abstract. The purpose of this study is to identify the advantages and limitations of the Feature-Sliced Design (FSD)
architectural methodology in the development of commercial frontend applications, particularly using Angular-based projects
that require a high degree of modularity, adaptability to change, and preservation of structural integrity throughout the
software product life cycle. Special attention is given to assessing the feasibility of implementing this approach within small
and medium-sized development teams operating in fast-paced environments with short release cycles and high demands for
maintainable code.

The research methodology is based on a structural analysis of the theoretical foundations of FSD, practical modeling of
software architecture using an open-source ToDo application implemented according to the full hierarchical structure-app,
processes, pages, widgets, features, entities, and shared-and a comparative analysis with leading alternative architectural
approaches such as Atomic Design, MVVM, and MVC. The comparison was conducted based on criteria such as scalability,
cohesion, module decoupling, reusability of components, structural transparency, and support for continuous integration.

The scientific novelty lies in a comprehensive description of the core advantages of FSD, including business logic
encapsulation, minimized inter-module dependencies, predictable structural hierarchy, and transparent component interaction
logic. For the first time, the study systematizes the practical constraints associated with FSD implementation: the complexity
of initial configuration, fragmented documentation, high architectural discipline requirements, and the onboarding difficulties
for new developers.

Conclusions. The study confirms the effectiveness of FSD as an architectural paradigm for building stable, scalable,
and long-term maintainable frontend systems. However, successful adoption requires a well-prepared development team,
comprehensive internal documentation, standardized structuring practices, and strict adherence to established architectural
principles. The practical significance of the research lies in offering recommendations for integrating FSD into commercial web
applications with elevated requirements for architectural manageability, maintainability, and scalability.

Key words: Feature-Sliced Design, Angular, frontend architecture, scalability, layered structure, modularity, ToDo
application, architectural methodology, technical debt, UX composition, project structure.

Oner CHUIATIH, JAmutpo IOJTABCbKHWA, Poman MAPTHHEHKO. JOC/AIIPKEHHSA IEPEBAT TA
OBMEXXEHb APXITEKTYPHOI METO/I0/IOTTi FEATURE-SLICED DESIGN Y KOMEPLIIMHUX FRONTEND-
ITPOEKTAX

AHnomayisn. Memoio docaidxnceHHs € susiB/eHHs nepegaz ma obmedxceHb apximekmypHoi memodosoezii Feature-Sliced
Design (FSD) y po3po6yi komepyitiHux frontend-3acmocyHkis, 3okpema Ha npukaadi Angular-npoekmis, siki eumazaromso
8UCOK020 cmyneHs ModyabHocmi, adanmugHocmi 0o 3MiH i nidmpumku cmpykmypHoi yisnicHocmi Ha 8cix emanax #cummegoz2o
Yukay npoezpamuozo npodykmy. Ocobaugy yeazy npudiieHo 8U3Ha4eHHI JoYinbHOCMI 8nposadiceHHs daHO20 nidxody y
KOMaHOaxX Ma/020 ma cepedHbo20 macumaby, ujo GyHKYioHyoms y cepedoguwyi iHmMeHCcUsHOi po3pobKu, 3 KopomKuMu
peAi3HUMU YUKAAMU Md BUCOKUMU 8UMO2aMU 00 hidmpumysaHocmi Kody.

Memodosozia docaidiceHHs1 6a3yembcsi HA CMPYKMYpPHOMY aHaaisi meopemuyHux 3acad FSD, npakmuuHomy
MO00e/1108aHHI apXimekmypu npo2pamHozo 3a6e3neveHHs Ha npukaadi ToDo-dodamky 3 gidkpumum kodom, peasiz08aHozo

© 0. Sypiahin, D. Poltavskyi, R. Martynenko, 2025

CTaTTsa NOIHMPIOETbCA Ha yMoBax JineHsii CC BY 4.0

ISSN 2786-5460 (Print), ISSN 2786-5479 (Online) 183



Inghopmayiiini mexnonoeii ma cycninecmeo. Bunyck 2 (17). 2025

eidnosidHo do sciei iepapxii pienie - app, processes, pages, widgets, features, entities ma shared. Takooc 3ditlicHeHo
nopigHsAbHUll aHAAI3 13 NPoBIOHUMU A/nbmepHaMueHUMU apximekmypHumu nidxodamu — Atomic Design, MVVM i MVC -
Ha ocHo8i Kpumepiie macwmaboeaHocmi, Kozesii, pigHs 36’s13aHoCmi MOdY/1i8, MOHCAUBOCMI NOBMOPHO20 BUKOPUCMAHHS
KOMNOHeHmis, cmpykmypHoi npo3zopocmi ma niompumku 6e3nepepsHoi iHmezpauyii.

Haykoea HO8U3HA no/sizae 8 KOMNJAEKCHOMY onuci kawouvosux nepesaz FSD, ceped akux - iHKancysasyisa 6i3Hec-
@dyHKYioHaNY, MIHIMI3aYis MINcMOOY/AbHUX 3aJexcHOcmel, nepedbavysaHa iepapxis cmpykmypu ma npo3opa J02ika
KoMNnoHeHMHoi 83aemodii. Bnepuie y3aza1bHeHO 06MedceH s, XapakmepHi 04151 NpakmuyHo20 3acmocy8aHHs Memodoozii:
cK/1adHicmb noyamko8020 8nposadiceHHsl, hpazmeHmapHicms doKyMeHmayii, sucoki sumozu 0o apximekmypHoi ducyunaiHu
ma mpyoHowi adanmayii Ho8uX po3POOHUKIE Y KOMAHJY.

BucHogku. Pesyremamu docaidxceHHs: nidomeepdxcyloms egekmusHicme FSD Ak apximekmypHoi napaduasmu
0451 no6ydosu cmabinbHUX, MacwmabosaHux i doszompugasno nidmpumyeaHux frontend-cucmem. BodHouac ycniwHe
3acmocy8aHHs nidxody eumazae 8UcoKoi nidzomosieHocmi KoMaHou, 8HympiwHboi dokymeHmayii, yHigpikosaHux nidxodie
do cmpykmypysaHHs ma 4imkoz2o dompuMaHHsl npuliHamux npuHyunise. [lpakmu4Ha 3Ha4ywicme 00CAIOHCEHHS NoAsA2a€E
y dopmyarosanHi pekomenoayiti wodo inmezpayii FSD y komepyilini ee63acmocyHku 3 nidguwjeHuMu eumo2amu 00
apximekmypHoi kepoeaHocmi, niompumysaHocmi i Macuima6o8aHocmi.

Kawwuosi caoea: Feature-Sliced Design, Angular, frontend-apximekmypa, macwumabosaHicms, waposa cmpykmypa,
ModynvHicmy, ToDo-dodamok, apximekmypHa Memodo.io2isi, mexHiyHUl 60pe, UX-komno3uyis, cmpykmypa npoekmy.

Problem Statement. In the context of increasing complexity in modern frontend systems and growing
demands for scalability, modularity, and maintainability of source code, there is an urgent need for architectural
approaches that support the effective organization of web application structure. One such approach is Feature-
Sliced Design (FSD), an architectural methodology that involves dividing a software product into hierarchical
layers (app, processes, pages, widgets, features, entities, shared) with clearly defined responsibilities. Despite
the rising popularity of this approach within open-source communities, its practical implementation in
commercial environments raises several concerns related to initial implementation costs, scalability challenges,
onboarding of new team members, and alignment with business requirements. The problem addressed in
this study lies in the critical analysis of the strengths and weaknesses of the FSD methodology when applied
in real-world frontend development projects. The aim of the study is to identify the architectural, technical,
and organizational conditions under which the use of FSD ensures maximum development efficiency and to
determine the limitations that may arise in a commercial setting.

Analysis of Recent Studies and Publications. In the current environment of rapid frontend technology
development,thereisincreasinginterestinoptimizingarchitectural solutions, particularly thosethatare modular
and scalable, enabling effective management of complexity in large-scale projects. A significant position in this
context is occupied by the Feature-Sliced Design (FSD) architectural methodology, which proposes structural
separation of code across domain, functional, and interface levels. The relevance of this topic is confirmed by the
emergence of studies analyzing both its potential and limitations in practical application. One of the conceptually
closest approaches is HOFA, presented in the monograph by H. Ben Khalfallah. This approach emphasizes the
creation of clean architecture in JavaScript and React applications, where maintaining isolation, separation
of responsibilities, and modular organization is critically important for code maintainability [2]. The HOFA
methodology closely corresponds to the principles of FSD, particularly in terms of component autonomy and
the structuring of business functionality. Similarly, the study by M. Kolomoyets and Y. Kynash focuses directly on
the architectural design of frontend applications. It emphasizes the importance of maintaining a clear hierarchy
in building web interfaces, which largely aligns with the core logic of FSD. The authors highlight the need for
implementing structural decomposition that enables functionality to scale without compromising the integrity
of the system [8]. An interesting interdisciplinary example of structured architecture is demonstrated by the
team of X. Kong et al., who developed the RFSD-YOLO model for detecting prohibited items in X-ray images.
Although this system belongs to the field of computer vision, its name (Refined Feature Sliced Design) and
structural principles reflect the adaptation of modularity and independent component processing concepts to
machine learning tasks [9].

The study by N. Rasovi¢ in the field of additive manufacturing also demonstrates the application of multi-
attribute analysis methods and architectural structuring for technical decision-making. Although not directly
related to web development, the approach to parameter formalization and modular task structuring indicates
a broader trend of transferring architectural thinking into adjacent technical domains [10].

S. Gao etal,, in their article, describe the architecture of an inspection neural network with a dynamic feature
extraction module and a task alignment mechanism. The structure of this model reflects an intention to isolate
subtasks and build efficient, predominantly independent modules, which fully aligns with the compositional
principles of the FSD approach [5].

Therefore, recent publications indicate a growing demand for architectural methodologies characterized by
clear decomposition and control over inter-component dependencies. The Feature-Sliced Design methodology

184 ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)



Information Technology and Society. Issue 2 (17). 2025

is increasingly viewed as a promising standard for structuring frontend applications; however, its practical
implementation in commercial environments requires further investigation.

Formulation of the Research Objective. The primary objective of this study is to comprehensively examine
the architectural methodology known as Feature-Sliced Design (FSD) within the context of commercial frontend
development, with a focus on its practical feasibility, advantages, and structural limitations. The central
emphasis is placed on evaluating the potential of FSD to enhance scalability, modularity, and maintainability of
web applications, taking into account the specifics of business logic, team management, and the projectlifecycle.

The technological goals of the study are as follows: to analyze the architectural principles underlying FSD
and compare them with traditional models (MVC, MVVM, Atomic Design); to model the structural framework of
a frontend application using FSD stratification (app / processes / pages / widgets / features / entities / shared);
to implement a demonstration project (ToDo Application) in Angular, incorporating the core principles of FSD
to assess the effectiveness of the approach; to verify technical performance, structural flexibility, and scalability
potential using business logic scenarios.

The practical goals of the study are as follows: to identify the conditions under which the application of
Feature-Sliced Design is optimal in commercial environments; to assess the impact of the FSD methodology
on reducing technical debt, accelerating the onboarding of new developers, and improving team collaboration
quality; to develop recommendations for implementing FSD in small and medium-sized IT teams.

The expected technical outcomes of the study are as follows: structured documentation and a visual
model of the frontend application architecture built using the FSD methodology; a functional prototype of an
Angular application implemented in accordance with FSD stratification; an analytical conclusion regarding the
advantages and limitations of FSD compared to alternative approaches.

The study holds significant importance for the advancement of architectural design practices in the field of
frontend development. It enables the evaluation not only of the effectiveness of FSD as a methodology but also
of its relevance to real-world business environments, making the findings valuable for teams seeking structural
clarity, flexibility, and scalability of software interfaces. The innovative aspect of this work lies in the practical
application of FSD principles within the Angular environment, followed by an analysis of its performance in a
business context.

Presentation of the main research material. The Feature-Sliced Design (FSD) architectural methodology,
which is formed at the intersection of structural engineering and a domain-oriented approach to frontend
development, is gradually gaining popularity among teams working with Angular, React, and other modern
frameworks. The mainideais to divide an application not by technical characteristics (e.g., components, services,
or templates), but by functional scenarios and business logic, which allows you to maintain the scalability and
manageability of the project [4].

The methodology is based on the principle of a multi-level hierarchy: the application is structured into layers
(app, processes, pages, widgets, features, entities, shared), each of which performs its own autonomous role.
Lower layers are unaware of the existence of higher layers - for example, shared components have no idea how
they are used at the page or feature level. This approach ensures one-way encapsulation of dependencies, i.e.,
direct links are formed only down the structure, which reduces the number of non-obvious links and facilitates
maintenance [3]. Technically, this means that a lower layer (e.g., shared) does not have access to layers above
or next to it. Higher layers (e.g., entities, features, pages) can use everything below them, but not vice versa -
similar to rivers that flow into the sea but do not flow in the opposite direction. This logic of relationships
between FSD layers is reflected in (Tab. 1).

Table 1
Rules for interaction between layers in Feature-Sliced Design architecture

Layer Can be used Can be used
app shared, entities, features, widgets, pages, processes -
processes shared, entities, features, widgets, pages app
pages shared, entities, features, widgets processes, app
widgets shared, entities, features pages, processes, app
features shared, entities widgets, pages, processes, app
entities shared features, widgets, pages, processes, app
shared - entities, features, widgets, pages, processes, app

The methodology pays special attention to the so-called “removability” of modules: each functional block
must be implemented in such a way that it can be completely removed without compromising the integrity of

ISSN 2786-5460 (Print), ISSN 2786-5479 (Online) 185



Inghopmayiiini mexnonoeii ma cycninecmeo. Bunyck 2 (17). 2025

the system. This is achieved through high component cohesion and minimal interdependence between them.
By analogy with a water system, each fragment (slice) is an independent “river” that flows into the common
“ocean” of the application logic, but does not intersect with other direct flows [4].

As part of the research, a prototype ToDo application was implemented on Angular, built according to FSD
principles. The corresponding structure looked as follows:

bash

src/
—— app/ # ry106a/IbHI HaJIaLITyBaHHS MapLUIpyTH3alil Ta CXOBHUIIA
—— pages/ # okpeMi ctopinkm (tasks-list, task-details, not-found)
—— features/ # cueHapii kopucrtyBaya (tasks-filter, toggle-task)
—— entities/ # 6i3Hec-cyTHOCTI (task-card, task-row)
—— shared/ # Ul-6i61ioTexu, API, ciinibHi cepBicu

Each page contains only the composition of components, while the interaction logic is moved to separate
“features.” For example, interaction with the task list is implemented as a separate function tasks-filter, and the
change in execution status is implemented in toggle-task. The essence of a task is formed as a data structure
with its own visual components, implemented as task-card and task-row [3]. Figure 1 shows how the application
structure is built according to the FSD methodology: from pages to shared components. Each layer is clearly
separated, and the arrows illustrate the permissible direction of interaction between layers.

Pages U
Toodgle o

Widget/ Features ™™ Task

I
Entities g &

£

Shared = UH ‘ ‘:u -

Fig. 1. Layer hierarchy in Feature-Sliced Design based on the ToDo application example

It is important to note that the implementation of the ToDo application provided an opportunity to
empirically validate the key advantages of FSD. First, the project’s structural organization facilitated the
distribution of roles within the development team. Second, during the testing phase, a reduction in git merge
conflicts was recorded, attributed to the separation of responsibilities across distinct project segments. Third,
it became possible to easily remove or replace any functional block without disrupting the overall application
logic, which is a critical factor for projects with frequent releases and evolving requirements [6, 7]. Thus, the
application of Feature-Sliced Design in commercial frontend projects enhances the manageability of software
architecture, although it requires the team to have a clear understanding of the paradigm and to maintain strict
discipline in adhering to structural rules. While the methodology is not a universal solution, its benefits become
particularly evident in medium- to large-scale development environments, where the cost of architectural debt
is especially high.

Conclusions. The conducted study provided a theoretical and applied analysis of the Feature-Sliced Design
(FSD) architectural methodology in the context of its application to commercial frontend projects. Based on the
client's materials, the architecture of a ToDo application developed in Angular was reconstructed in accordance
with FSD principles, which enabled the demonstration of real implementation mechanisms.

186 ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)



Information Technology and Society. Issue 2 (17). 2025

The main focus of the study was on the structural organization of the project through the stratification of
logic: app, processes, pages, widgets, features, entities, and shared. Each layer was assigned specific functional
responsibilities, permitted interdependencies (according to the rules of unidirectional encapsulation), and a
defined role in ensuring modularity. Visual diagrams and integrated tables illustrate the direction of dependency
flows and the logic underlying the construction of the interface layer of the product.

The research concluded that FSD ensures high structural flexibility, simplifies the distribution of
responsibilities among developers, and facilitates the refactoring of individual code segments without
compromising architectural integrity. Additional advantages of the methodology include reduced technical
debt and logical isolation of functional modules. At the same time, the study identified several limitations,
including the need for preliminary architectural planning, standardization of approaches within the team, and
appropriate developer competencies.

The innovative contribution of this work lies in the analytical adaptation of the modern FSD methodology
to a concrete application example, making the results applicable as a conceptual model for implementation in
small and medium-sized projects. The resulting structure demonstrates potential for scalability and flexible
development without compromising manageability.

Future research directions include the formalization of criteria for evaluating architectural efficiency in
comparison with alternative approaches (such as MVVM or Atomic Design), as well as the extension of FSD
methodology for use in multifunctional applications with complex business logic.

Bibliography:

1. Ben Khalfallah H. CRISP: Clean, Reliable, Integrated Software Process. Crafting Clean Code with JavaScript and React.
Berkeley, CA : Apress, 2024. URL: https://doi.org/10.1007/979-8-8688-1004-6_6. (date of access: 08.06.2025).

2. Ben Khalfallah H. HOFA: The Path Toward Clean Architecture. Crafting Clean Code with JavaScript and React:
A Practical Guide to Sustainable Front-End Development. Berkeley, CA : Apress, 2024. P. 233-287. URL: https://
doi.org/10.1007/979-8-8688-1004-6_4. (date of access: 08.06.2025).

3. Feature-Sliced Design - modern Front End Architectural Methodology on Angular. Medium. URL: https://medium.
com/@fed4wet/feature-sliced-design-modern-architectural-methodology-on-angular-dOef705ef598. (date of access:
08.06.2025).

4. Feature-Sliced Design (FSD). URL: https://medium.com/@jstify.community/feature-slice-design-%D1%89%D0%
BE-%D1%86%D0%B5-%D1%82%D0%B0%D0%BA%D0%B5-8cb86d059c16. (date of access: 08.06.2025).

5. Gao S, Xia T, Hong G., Zhu Y., Chen Z., Pan E, Xi L. An inspection network with dynamic feature extractor and
task alignment head for steel surface defect. Measurement 2024. Vol. 224. P. 113957. URL: https://doi.org/10.1016/j.
measurement.2023.113957. (date of access: 08.06.2025).

6. Goh H. A, Ho C. K, Abas E S. Front-end deep learning web apps development and deployment: a review. Applied
Intelligence 2023. Vol. 53, No. 12. P. 15923-15945. URL: https://doi.org/10.1007/s10489-022-04278-6. (date of access:
08.06.2025).

7. Hidayat D. C., Atmaja . K. |, Sarasvananda I. B. G. Analysis and Comparison of Micro Frontend and Monolithic
Architecture for Web Applications. Jurnal Galaksi 2024. Vol. 1, No. 2. P. 92-100. URL: https://doi.org/10.70103/galaksi.
v1i2.19. (date of access: 08.06.2025).

8. Kolomoyets M., Kynash Y. Front-End web development project architecture design. 2023 IEEE 18th International
Conference on Computer Science and Information Technologies (CSIT). 2023. P. 1-5. URL: https://doi.org/10.1109/
CSIT61576.2023.10324238. (date of access: 08.06.2025).

9. Kong X, Li A, Li W, Li Z, Zhang Y. RFSD-YOLO: An Enhanced X-Ray Object Detection Model for Prohibited Items.
2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC). October 2024. P. 4412-4418. URL: https://
doi.org/10.1109/SMC54092.2024.10831942. (date of access: 08.06.2025).

10. Rasovi¢ N. Recommended layer thickness to the powder-based additive manufacturing using multi-attribute
decision support. International Journal of Computer Integrated Manufacturing 2021. Vol. 34, No. 5. P. 455-469. URL:
https://doi.org/10.1080/0951192X.2021.1891574. (date of access: 08.06.2025).

JlaTa HagxopkeHHs ctaTTi: 25.06.2025
JlaTa mpuiinsaTTsa crarTi: 30.06.2025
Omy6JtikoBano: 23.09.2025

ISSN 2786-5460 (Print), ISSN 2786-5479 (Online) 187



