
117ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)

Information Technology and Society. Issue 3 (18). 2025

УДК 004.415.5
DOI https://doi.org/10.32689/maup.it.2025.3.16

Борис ПАНАСЮК
аспірант спеціальності «Інженерія програмного забезпечення»,
Вінницький національний технічний університет,
boris.panasyuk@gmail.com
ORCID: 0009-0007-2064-9121

Наталя БАБЮК
кандидат технічних наук, доцент кафедри програмного забезпечення,
Вінницький національний технічний університет,
babiuk@vntu.edu.ua
ORCID: 0000-0003-0607-6340

КОНТРАКТНО-ОРІЄНТОВАНИЙ ЦИФРОВИЙ ДВІЙНИК МІКРОСЕРВІСНОЇ СИСТЕМИ:
МОДЕЛЬ, МЕТАМОДЕЛЬ, АРТЕФАКТИ OPENAPI/ASYNCAPI

Анотація. Метою дослідження є створення контрактно-орієнтованого цифрового двійника мікросервісної сис-
теми, що базується на моделі та метамоделі взаємодії сервісів через їх API-контракти. Для досягнення мети ви-
користано підхід API-first: формальні специфікації сервісів (OpenAPI для REST API та AsyncAPI для асинхронних API)
слугують артефактами, на основі яких автоматично побудовано модель цифрового двійника.

Методологія. Застосовано аналіз та узагальнення сучасних підходів до цифрових двійників, моделювання мі-
кросервісної архітектури із використанням формальних описів інтерфейсів, а також виконано порівняльний аналіз
з існуючими моделями цифрових двійників.

Наукова новизна. Запропоновано концепцію «контрактно-орієнтованого» цифрового двійника, що вперше фо-
кусує цифрову модель системи на її API-контрактах, забезпечуючи автоматизоване отримання та актуалізацію
двійника з артефактів OpenAPI/AsyncAPI, тим самим поєднуючи процес документування API з підтримкою вірту-
альної копії системи.

Висновки. Контрактно-орієнтований підхід дозволяє підтримувати цифровий двійник актуальним при ево-
люції мікросервісів, спрощує тестування сумісності сервісів і аналіз поведінки системи без впливу на продуктивне
середовище. Запропонований підхід апробовано на прикладі спрощеної мікросервісної системи; результати підтвер-
джують можливість автоматичного формування двійника та ефективність його використання для інтеграцій-
ного тестування нових версій сервісів. Отримані результати можуть бути впроваджені у практику DevOps для
автоматизації регресійного тестування мікросервісів та контролю відповідності їх реалізації заявленим контрак-
там. В цілому, використання контрактно-орієнтованого двійника сприяє підвищенню якості та надійності мікро-
сервісних програмних комплексів та скорочує час, необхідний на інтеграційне тестування.

Ключові слова: контракт‑орієнтоване моделювання, інформаційна система, цифровий двійник, мікросервісна
архітектура, API-контракт, моделювання, автоматизація.

Borys PANASIUK, Natalia BABIUK. CONTRACT-ORIENTED DIGITAL TWIN OF A MICROSERVICE SYSTEM:
MODEL, METAMODEL, OPENAPI/ASYNCAPI ARTIFACTS

Abstract. The study aims to develop a contract-oriented digital twin of a microservice-based system, grounded in a model
and meta-model of service interactions defined by their API contracts.

Methodology. The study adopts an API-first approach: formal service interface specifications (OpenAPI for REST APIs
and AsyncAPI for event-driven APIs) are used as artifacts to automatically construct the digital twin model. Additionally,
a comparative analysis with existing approaches was conducted.

Scientific novelty. The concept of a «contract-oriented» digital twin is proposed, focusing the virtual model of the system
on its API contracts; this approach is novel in enabling automated generation and updating of the twin from OpenAPI/AsyncAPI
artifacts. This effectively merges the API documentation process with the maintenance of a live system model.

Conclusions. The contract-oriented approach ensures the digital twin remains up-to-date as microservices evolve, and
it simplifies compatibility testing and behavioral analysis of the system without impacting the production environment.
The proposed approach was validated on a simplified microservice scenario; the results confirm the feasibility of automatic
twin generation and its effectiveness for integration testing of new service versions. The outcomes can be applied in DevOps
practice to automate regression testing of microservices and ensure that their implementations conform to specified contracts.
Overall, using a contract-oriented twin helps improve the quality and reliability of microservice-based software systems and
reduces the time required for integration testing. A simplified prototype of the digital twin was implemented to demonstrate
the approach, which showed its viability in a realistic scenario.

Key words: contract-oriented modelling, information system, digital twin, microservice architecture, API contract,
modelling, automation.

© Б. Панасюк, Н. Бабюк, 2025

Стаття поширюється на умовах ліцензії CC BY 4.0

118 ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)

Інформаційні технології та суспільство. Випуск 3 (18). 2025

Постановка проблеми. Мікросервісна архітектура стала широко розповсюдженою для побудови
масштабованих розподілених програмних систем. В той же час вона ускладнює забезпечення надій-
ності та узгодженості системи, оскільки велика кількість сервісів з чітко визначеними інтерфейсами
постійно змінюється та взаємодіє між собою. Цифровий двійник – віртуальна модель реального об’єк-
та чи системи – давно використовується в промисловості для моніторингу та прогнозування стану
фізичних активів [9]. Багато з цих можливостей можуть бути корисними і для програмних систем на
основі мікросервісів. Проте пряме застосування концепції цифрового двійника, спочатку орієнтованої
на фізичні системи, до програмної архітектури стикається з проблемою відсутності фізичних параме-
трів та необхідністю моделювати поведінку сервісів і їх взаємодію.

Традиційно, цифровий двійник визначається як віртуальне представлення фізичного об’єкта або
процесу, що тісно пов’язане з реальним прототипом і синхронізується з ним у режимі, близькому до
реального часу [4]. Розрізняють поняття цифрової моделі, цифрової тіні та власне цифрового двійни-
ка: цифрова модель – це точна віртуальна копія об’єкта без автоматичного зв’язку з ним; цифрова тінь
має однобічний зв’язок (дані надходять від реального об’єкта до моделі); цифровий двійник же перед-
бачає двонапрямний обмін даними між фізичним і віртуальним об’єктом [5]. У випадку програмної
системи «фізичним» об’єктом є сам програмний сервіс або сукупність сервісів, а роль даних викону-
ють, зокрема, повідомлення та виклики API, які можна перехоплювати й аналізувати.

Проблемою є відсутність методів і моделей, що дозволяють створити цифровий двійник саме для
програмної мікросервісної системи та підтримувати його актуальність у контексті частих змін сер-
вісів. Існуючі підходи до моніторингу і тестування мікросервісів (наприклад, системи централізова-
ного логування, трасування, contract testing) лише частково реалізують концепцію цифрового двій-
ника і, як правило, не інтегровані в єдину модель системи. Відтак постає завдання розробити підхід,
який дозволить формувати віртуальну модель мікросервісної системи, що відображає її структуру та
поведінку, на основі артефактів, які вже існують у процесі розробки – формальних описів API. Такий
контрактно-орієнтований цифровий двійник має слугувати інструментом для моделювання взаємодії
сервісів, тестування змін та забезпечення відповідності між реалізацією сервісів і їхніми контрактами.

Аналіз останніх досліджень і публікацій. Концепція цифрового двійника була вперше запропо-
нована у сфері керування життєвим циклом продукту М. Грівзом і Дж. Вікерсом (NASA) та формалі-
зована у 2014 році [4]. З того часу цифрові двійники набули широкого застосування в різних галузях:
виробництві, енергетиці, транспорті тощо [9], де вони використовуються для віддаленого моніто-
рингу стану обладнання, прогнозування несправностей та оптимізації роботи систем. Наприклад, де-
тальний огляд технологій цифрових двійників в контексті IoT представлений в роботі Minerva et al.
(2020) [7], де розглядаються технічні характеристики та архітектурні моделі реалізації двійників для
промислових пристроїв. В огляді Rasheed et al. (2020) особлива увага приділяється проблемам моде-
лювання при створенні цифрових двійників та підкреслюється важливість адекватних інформацій-
них моделей [10].

Останніми роками з’явилися роботи, присвячені застосуванню концепції цифрових двійників до
хмарних та програмних систем. Зокрема, у роботі Raghunandan et al. (2023) запропоновано цифро-
вий двійник для архітектури мікросервісів у Kubernetes, який відслідковує використання ресурсів
кластера в реальному часі та дозволяє виявляти аномалії [9]. Інший підхід – KubeKlone (Bhardwaj,
Benson, 2022) – являє собою програмний симулятор (digital twin) для хмарно-периферійних мікросер-
вісних застосувань, призначений для експериментів з алгоритмами автоматичного керування інфра-
структурою на основі AI [3]. Bellavista et al. (2024) описують масштабовану мікросервісну платформу
цифрових двійників для сценаріїв «хмара-край», яка використовує безсерверні обчислення для гнуч-
кого розгортання компонентів двійника [2]. Таким чином, тенденція останніх досліджень – перехід
від суто фізичних систем до програмно-орієнтованих двійників, зокрема мікросервісних архітектур.

Окремо варто відзначити роботи, де сама архітектура цифрового двійника реалізована з викорис-
танням мікросервісів. Так, Loboda, Starovit (2022) запропонували програмну архітектуру цифрового
двійника для об’єкта «Новий безпечний конфайнмент» (укриття на ЧАЕС), в якій функціональні мо-
дулі двійника (візуалізація, прогнозування, аналіз) реалізовані як окремі мікросервіси, що взаємоді-
ють через захищені протоколи [6]. Це підтверджує доцільність принципів мікросервісності у побудові
складних цифрових двійників.

Аналіз публікацій показує, що хоча елементи концепції цифрового двійника вже застосовуються
для мікросервісних систем, відсутні рішення, які б явно використовували контрактно-орієнтований
підхід. Більшість існуючих робіт фокусуються або на моніторингу ресурсів і станів (як у Raghunandan
et al.), або на засобах симуляції навантаження (як у KubeKlone), або на загальних питаннях архітек-
тури. Натомість наш підхід пропонує будувати модель двійника безпосередньо зі специфікацій

119ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)

Information Technology and Society. Issue 3 (18). 2025

інтерфейсів сервісів (контрактів API), що вже наявні. Такий підхід відповідає сучасній практиці
контрактно-орієнтованої (API-first) розробки мікросервісів [8], проте досі не був формалізований
у вигляді цілісної концепції програмного цифрового двійника.

Мета статті. Метою цієї роботи є розробка моделі та метамоделі контрактно-орієнтованого циф-
рового двійника мікросервісної системи, а також методичних засад автоматизованого отримання
відповідних артефактів (формальних описів інтерфейсів OpenAPI/AsyncAPI) і використання їх для
побудови та підтримки цифрового двійника. Іншими словами, ставиться завдання формалізувати
структуру цифрового двійника, що ґрунтується на контрактах сервісів, та показати, як на основі цієї
структури можна автоматично генерувати допоміжні артефакти: симуляції сервісів, тестові сценарії,
моніторингові компоненти тощо.

Для досягнення зазначеної мети потрібно вирішити такі підзадачі:
–	 Розробка метамоделі – описати основні сутності мікросервісної системи та їх взаємозв’язки

в контексті API-контрактів (як REST, так і асинхронних).
–	 Формування моделі двійника – на основі метамоделі створити узагальнену модель цифрового

двійника, яка включає представлення кожного сервісу та їхніх взаємодій.
–	 Автоматизація побудови – визначити процес автоматизованого отримання моделі двійника

з артефактів OpenAPI/AsyncAPI та механізми синхронізації моделі з реальними сервісами (наприклад,
через перехоплення викликів або оновлення при зміні версій API).

–	 Оцінка переваг – порівняти запропонований підхід із традиційними методами (централізований
моніторинг, інтеграційне тестування тощо) щодо забезпечення цілісності системи та прискорення ци-
клу розробки.

Модель та метамодель контрактно-орієнтованого цифрового двійника. Метамодель цифро-
вого двійника мікросервісної системи визначає ключові елементи, необхідні для опису структури та
поведінки системи на рівні її контрактів. На (рис. 1) (умовно) зображено основні класи метамоделі та
зв’язки між ними. Центральним елементом є клас Microservice (Мікросервіс), який характеризується
набором контрактів APIContract. Кожен APIContract може бути двох підтипів:

–	 RESTContract – описує синхронний веб-сервіс (HTTP REST API) з набором ресурсів та операцій.
–	 EventContract – описує асинхронний сервіс (напр., обмін повідомленнями через черги або топіки)

з визначенням каналів публікації/підписки.

Рис. 1. Метамодель контрактно-орієнтованого цифрового двійника мікросервісної системи

120 ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)

Інформаційні технології та суспільство. Випуск 3 (18). 2025

Клас RESTContract містить колекцію об’єктів типу RESTOperation – кожна операція відповідає од-
ному кінцевому endpoint REST API з конкретним HTTP-методом (GET, POST тощо) та шляхом. Для
RESTOperation фіксується:

–	 набір RequestParameter (параметри запиту: path, query, header, body), кожен із зазначенням типу
даних;

–	 структура Response(ів) – для різних кодів відповіді визначаються типи даних тіла відповіді (або
вказується, що тіло відсутнє).

Аналогічно, клас EventContract містить колекцію Channel, кожен з яких має дві можливі ролі:
Publisher (генерує події) або Subscriber (споживає події). Кожен Channel характеризує тип повідомлен-
ня (Message) з певною схемою даних.

Для узагальнення вводиться клас DataSchema (Схема даних), який описує структуру даних (об’єк-
тів, масивів, примітивів) у форматі, сумісному з JSON Schema. Об’єкти RequestParameter, Response та
Message містять посилання на відповідний DataSchema, що визначає формат даних.

Таким чином, APIContract (незалежно від типу REST чи Event) складається з описів операцій/ка-
налів та пов’язаних із ними схем даних. Ці описи безпосередньо відповідають структурам стандар-
тів OpenAPI та AsyncAPI, що забезпечує можливість автоматичного перетворення. Зокрема, артефакт
OpenAPI версії 3.0/3.1 може бути розпарсований [8] у набір об’єктів RESTContract, RESTOperation,
DataSchema, а артефакт AsyncAPI – у відповідні об’єкти EventContract, Channel, Message і DataSchema [1].

На рівні системи метамодель передбачає також відношення між мікросервісами залежності за ви-
користанням чужих API. Для цього вводиться зв’язок типу Microservice → Microservice («depends on»),
який означає, що один сервіс виступає клієнтом API іншого. Цей зв’язок може бути заданий вручну
(на основі знання архітектури), або виявлений автоматично шляхом аналізу конфігурацій викликів
(наприклад, шляхом пошуку URL звернень у коді). У моделі така залежність використовується для по-
будови графа взаємодії сервісів.

Загальна модель цифрового двійника мікросервісної системи складається з:
–	 сукупності об’єктів Microservice, кожен з яких має власні контракти API (RESTContract і/або

EventContract);
–	 визначених залежностей між цими Microservice;
–	 спільного компонента Environment (середовище), що моделює середовище виконан-

ня – мережеві умови, брокери повідомлень тощо (за потреби модель може бути розширена на рівень
інфраструктури).

Автоматизація побудови та оновлення двійника. Однією з ключових переваг контрактно-орі-
єнтованого підходу є можливість автоматизувати процес створення цифрового двійника. У типовому
циклі розробки мікросервісів прийнято підтримувати актуальну документацію API у вигляді специфі-
кацій OpenAPI/AsyncAPI (файл формату YAML/JSON) – такий підхід забезпечує єдине джерело правди
про інтерфейси сервісів. Отже, побудова двійника може бути реалізована як конвеєр з кількох етапів:

1.	 Збирання контрактів. Із репозиторіїв коду або з централізованого реєстру збираються актуальні
файли OpenAPI (для кожного REST-сервісу) та AsyncAPI (для сервісів, що спілкуються через повідом-
лення). Кожен файл контракту описує структуру API окремого сервісу.

2.	 Парсинг і трансформація. Кожна специфікація парсується за допомогою відповідних бібліотек
(наприклад, Swagger-parser для OpenAPI або AsyncAPI parser) у внутрішню об’єктну модель. На цьо-
му етапі забезпечується відповідність елементів: визначення шляхів і методів переводяться в об’єкти
RESTOperation, специфікації схем даних зі складу контракту – у об’єкти DataSchema тощо. Аналогічно,
AsyncAPI-специфікація перетворюється на об’єкти Channel та Message зі зв’язком до DataSchema.

3.	 Формування моделі системи. На основі метамоделі створюються екземпляри Microservice з за-
повненням їх APIContract відповідно до отриманих даних. Якщо контракти містять посилання на зов-
нішні сервіси чи топіки (наприклад, AsyncAPI може декларувати підписку на топік, який публіку-
ється іншим сервісом), ці відомості використовуються для встановлення зв’язків «depends on» між
Microservice. За відсутності явних вказівок залежності можуть бути визначені експертно або шляхом
аналізу конфігурацій (не є частиною контрактів, але можуть бути додані вручну для повноти моделі).

4.	 Розгортання цифрового двійника. Отримана модель може бути застосована кількома способа-
ми. По-перше, на її основі генеруються mock-сервіси – спрощені реалізації сервісів, що відповідають
їх контрактам. Для цього використовуються наявні інструменти генерації коду: наприклад, на осно-
ві OpenAPI можна згенерувати каркас веб-сервера, який повертає фіксовані відповіді (або echo-від-
повіді) відповідно до контракту; на основі AsyncAPI – налаштувати тестовий брокер, що імітує не-
обхідні канали та повідомлення. По-друге, модель слугує схемою для налаштування моніторингу:
для кожного зафіксованого в моделі endpoint автоматично формується тестовий запит та перевірка

121ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)

Information Technology and Society. Issue 3 (18). 2025

очікуваного формату відповіді (т.зв. контрактне тестування). Таким чином цифровий двійник вико-
нує роль середовища віртуального тестування – запити до двійника обробляються mock-сервісами
згідно з контрактами і дозволяють перевіряти інтеграцію без підняття реальних сервісів.

Автоматичне оновлення двійника відбувається при зміні контрактів. Якщо розробник змінює
OpenAPI- або AsyncAPI-специфікацію сервісу (наприклад, додає новий метод або модифікує структу-
ру даних), конвеєр перетворення запускається повторно та оновлює відповідні частини моделі двій-
ника. Таким чином цифровий двійник завжди відображає актуальний стан інтерфейсів системи. Для
порівняння, у традиційних підходах часто страждає актуальність документації API (вона може «гни-
ти» – відставати від реалізації); у нашому ж підході ця проблема мінімізується, оскільки двійник без-
посередньо генерується з тих самих артефактів, що й код сервісів (у контракт-орієнтованій розробці
контракт створюється перед написанням коду).

Приклад та порівняння з існуючими рішеннями. Розглянемо спрощений приклад. Система скла-
дається з трьох мікросервісів: Order Service, Payment Service та Notification Service. Order Service надає
REST API для створення замовлень (POST /orders) та отримання їх статусу (GET /orders/{id}); Payment
Service надає REST API для опрацювання платежів (POST /payments); Notification Service підписується
на подію OrderCreated (через брокер повідомлень, напр. RabbitMQ) та надсилає email з підтверджен-
ням замовлення. Для цих сервісів існують специфікації API: OpenAPI для перших двох та AsyncAPI для
останнього.

На основі цих специфікацій наш підхід формує модель двійника. Створюються три об’єкти
Microservice – по одному на кожен сервіс – і для кожного заповнюється контракт: у Order Service
це RESTContract з двома операціями (POST /orders, GET /orders/{id}) та відповідними схемами да-
них (наприклад, OrderRequest, OrderResponse); у Payment Service – RESTContract з однією операці-
єю (POST /payments) та схемою PaymentRequest; у Notification Service – EventContract з каналом order.
created (роль Subscriber) та повідомленням OrderCreatedMessage (містить, наприклад, ID замовлен-
ня та email клієнта). У модель додаються залежності: Notification Service залежить від Order Service
(споживає його події), Order Service – від Payment Service (може викликати його API при створенні
замовлення).

Для тестування такої системи традиційно потрібне розгортання всіх трьох сервісів у тестовому се-
редовищі або створення заглушок вручну. Контрактно-орієнтований двійник дозволяє здійснити це
автоматично. На основі OpenAPI для Order і Payment Service генеруються mock-сервери, що реалізу-
ють відповідні endpoints та повертають типові відповіді (наприклад, за допомогою Swagger Codegen).
На основі AsyncAPI налаштовується тестовий брокер, який відправляє і приймає повідомлення
OrderCreated. Далі інтегруємо ці компоненти: надсилаємо HTTP-запит POST /orders на mock Order
Service – той повертає попередньо визначену відповідь (наприклад, 201 Created з деяким orderId).
У реальній системі Order Service після створення замовлення опублікував би подію; у тестовому се-
редовищі ми імітуємо це вручну, відправивши повідомлення OrderCreated на Notification Service (у на-
шому двійнику). Перевіряємо, що mock Notification Service отримав повідомлення і згенерував, скажі-
мо, відповідний лог або виклик (в реальній реалізації – email). Попри спрощеність, такий експеримент
дозволяє на ранніх етапах виявити невідповідності у форматі даних або послідовності викликів між
сервісами.

Порівняємо підхід з існуючими рішеннями. Raghunandan et al. (2023) та деякі інші роботи фокусу-
ються передусім на симуляції низькорівневих аспектів (навантаження, використання ресурсів) для
моніторингу і оптимізації, тоді як наш підхід спрямований на перевірку функціональної сумісності –
відповідності контрактам і інтеграції. Він не заміняє моделі типу KubeKlone (що емулюють продуктив-
ність системи), а доповнює їх, забезпечуючи автоматизовану валідацію правильності інтерфейсів та
взаємодій. Фактично, контрактно-орієнтований двійник поєднує ідеї контрактного тестування та се-
редовища симуляції в межах єдиної моделі.

Висновки. У роботі представлено підхід до побудови цифрового двійника мікросервісної системи
на основі її контрактів (специфікацій API). Розроблено формальну метамодель, яка описує мікросер-
віс, його RESTful і подієві інтерфейси, а також взаємозв’язки між сервісами. Показано, що використан-
ня існуючих артефактів OpenAPI та AsyncAPI дає змогу автоматизувати процес створення моделі двій-
ника та генерування на її основі допоміжних компонентів (mock-сервісів, емуляторів повідомлень,
тестових сценаріїв). Контрактно-орієнтований цифровий двійник підтримує актуальність моделі сис-
теми при внесенні змін до API, оскільки оновлення специфікацій автоматично відображається на мо-
делі двійника.

Наукова новизна роботи полягає в поєднанні концепції цифрового двійника з методологією
контрактно-орієнтованої розробки програмного забезпечення. Це дозволило створити інструмент,

122 ISSN 2786-5460 (Print), ISSN 2786-5479 (Online)

Інформаційні технології та суспільство. Випуск 3 (18). 2025

який не лише відображає структуру системи, але й інтегрується у процес розробки, слугуючи «жи-
вою» документацією та середовищем для експериментів. Практична цінність підходу полягає у спро-
щенні інтеграційного тестування: команди розробників можуть перевіряти сумісність сервісів із двій-
ником до їхнього розгортання в спільному середовищі, що знижує ризики збоїв при інтеграції.

Перспективи подальших досліджень включають розширення можливостей цифрового двійни-
ка для моделювання динаміки системи під навантаженням (шляхом інтеграції з інструментами на
кшталт KubeKlone) та реалізацію двостороннього зв’язку з реальними сервісами (тобто перехід від
цифрової тіні до повноцінного цифрового двійника програмної системи). Доцільним є також оціню-
вання ефективності запропонованого підходу на реальних кейсах і розробка рекомендацій щодо впро-
вадження контрактно-орієнтованих двійників у практику DevOps.

Список використаних джерел:
1.	 AsyncAPI Initiative. AsyncAPI Specification (Version 2.3.0), 2022. URL: https://www.asyncapi.com (дата

звернення: 24.09.2025).
2.	 Bellavista P., Bicocchi N., Fogli M., Giannelli C., Mamei M., Picone M. Exploiting microservices and serverless

for Digital Twins in the cloud-to-edge continuum. Future Generation Computer Systems, 2024, pp. 275–287.
DOI: 10.1016/j.future.2024.03.052.

3.	 Bhardwaj A., Benson T.A. KubeKlone: A Digital Twin for Simulating Edge and Cloud Microservices. In: Proc. 6th Asia-
Pacific Workshop on Networking (APNet 2022), ACM, 2022, 7 p. DOI: 10.1145/3542637.3542642.

4.	 Grieves M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Paper, 2014, 7 p.
5.	 Kritzinger W., Karner M., Traar G., Henjes J., Sihn W. Digital Twin in manufacturing: A categorical literature review

and classification. IFAC-PapersOnLine, 2018, 51(11), pp. 1016–1022. DOI: 10.1016/j.ifacol.2018.08.474.
6.	 Лобода П. П., Старовіт І. С. Розробка архітектури програмного забезпечення прогнозування і управління

термогазодинамічними процесами і радіаційним станом нового безпечного конфайнменту ЧАЕС на основі
технології цифрових двійників. Вісник ХНТУ, 2022, № 4(83), c. 67–73. DOI: 10.35546/kntu2078-4481.2022.4.9.

7.	 Minerva R., Lee G. M., Crespi N. Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and
Architectural Models. Proceedings of the IEEE, 2020, 108(6), pp. 1785–1824. DOI: 10.1109/JPROC.2020.2998530.

8.	 OpenAPI Initiative. OpenAPI Specification (Version 3.1.0), 2021. URL: https://spec.openapis.org/oas/v3.1.0
(дата звернення: 24.09.2025).

9.	 Raghunandan A., Kalasapura D., Caesar M. Digital Twinning for Microservice Architectures. In: Proc. IEEE Int. Conf.
on Communications (ICC 2023), 2023, pp. 3018–3023. DOI: 10.1109/ICC45041.2023.10279802.

10.	 Rasheed A., San O., Kvamsdal T. Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. IEEE
Access, 2020, 8, pp. 21980–22012. DOI: 10.1109/ACCESS.2020.2970143.

Дата надходження статті: 25.09.2025
Дата прийняття статті: 20.10.2025

Опубліковано: 04.12.2025

