ANALYSIS OF MODERN ACHIEVEMENTS IN THE FIELD OF ARTIFICIAL NEURAL NETWORKS, MACHINE LEARNING AND COMPUTATIONAL INTELLIGENCE

Authors

  • Anton MALTSEV

DOI:

https://doi.org/10.32689/maup.it.2022.2.9

Keywords:

artificial neural network, machine learning, computational intelligence, achievements, science, development, industry

Abstract

Objective is to analyze current advances in artificial neural networks, machine learning and computational intelligence. Methodology: structuring modern advances in artificial neural networks, machine learning and computational intelligence; analysis of the dynamics of scientific publications on the research topic. Scientific novelty. The article for the first time structures the analysis of modern achievements in the field of artificial neural networks, machine learning and computational intelligence. It is emphasized that the artificial neural network is one of the ways to implement artificial computational intelligence, within the formation of which there is a large area – machine learning, which is its basis. The positioning of artificial neural networks, machine learning and computational intelligence has been structured. The spheres of application of developments in the field of artificial neural networks, machine learning and computational intelligence are described: in the medical field an effective machine learning algorithm has been developed to assess the degree of risk of cardiovascular diseases in patients; in the financial sphere, machine learning allows to detect potential cases of fraud in various spheres of life; e-commerce introduces the basic mechanisms of machine learning as a methodology to predict the impact of shares on sales; as a natural language for creating chatbots that would help customers get the necessary information about the company’s products; transport infrastructure implements a concept based on neural networks, in which artificial intelligence is responsible for recognizing surrounding objects such as a foreign car, pedestrian, roadblock, etc. The industry uses artificial neural networks to develop synthetic molecules, regulate the composition and parameters of the metal during its smelting, the same applies to work on the smelting of glass and products that contain a complex of components. The tabular form presents current achievements in the field of artificial neural networks, machine learning and computational intelligence for 2020–2021. Conclusions. The paper analyzes the current achievements in the field of artificial neural networks, machine learning and computational intelligence, which is based on the perceptron as a cybernetic model of information perception by the brain.

References

Хома Ю. В., Бенч А. Я. Порівняльний аналіз спеціалізованих програмних та апаратних засобів для алгоритмів глибокого навчання. Комп’ютерні системи і мережі. 2019. Т. 1. № 1. С. 97–102.

Дєнєжніков C. С. Трансгуманістичні перспективи розвитку штучного інтелекту. Філософія науки: традиції та інновації. 2018. № 1 (17). С. 118–127.

Методи машинного навчання у задачах системного аналізу і прийняття рішень / М. Угрюмов та ін. Методи машинного навчання у багатокритеріальних задачах надійного оптимального проєктування та інтелектуальної діагностики систем (ROD & IDS) в умовах невизначеності. Харків : Харківський національний університет імені В. М. Каразіна, 2019. 195 с.

Сеніва К. Р. Способи використання нейронних мереж та машинного навчання в комп’ютерних іграх. Вісник Хмельницького національного університету. Хмельницький, 2021. № 2 (295). С. 97–99. DOI: 10.31891/2307-5732-2021-295-2-97-100

Artificial intelligence. Machine learning / О. В. Григоров та ін. Vehicle and Electronics. Innovative Technologies. 2019, Vol. 15, p. 17. URL: http://veit.khadi.kharkov.ua/article/view/169289 (дата звернення: 17.04.2022).

Amer M. E. M. Modularity in artificial neural networks : Doctoral dissertation, University of Nottingham. 2021. URL: https://www.researchgate.net/publication/353702457_Modularity_in_artificial_neural_networks (дата звернення: 17.04.2022).

Padma K. R., Don K. R. Artificial Neural Network Applications in Analysis of Forensic Science. Cyber Security and Digital Forensics. 2022. P. 59–72. DOI: 10.1002/9781119795667.ch3

Quantum computing models for artificial neural networks / S. Mangini et al. EPL (Europhysics Letters). 2021. Vol. 134, No. 1. P. 10002. URL: https://doi.org/10.1209/0295-5075/134/10002 (дата звернення: 17.04.2022).

Olvera J. D. D. R., Gómez-Vargas I., & Vázquez J. A. Observational cosmology with Artificial Neural Networks. 2021. arXiv preprint arXiv:2112.12645. URL: https://www.researchgate.net/publication/357301768_Observational_cosmology_with_Artificial_Neural_Networks (дата звернення: 17.04.2022).

Published

2022-08-11

How to Cite

МАЛЬЦЕВ, А. (2022). ANALYSIS OF MODERN ACHIEVEMENTS IN THE FIELD OF ARTIFICIAL NEURAL NETWORKS, MACHINE LEARNING AND COMPUTATIONAL INTELLIGENCE. Information Technology and Society, (2 (4), 65-69. https://doi.org/10.32689/maup.it.2022.2.9