PREDICTION OF ORAL DRUG BIOAVAILABILITY BASED ON CHEMICAL STRUCTURE
DOI:
https://doi.org/10.32689/2663-0672-2024-4-16Keywords:
chemometrics, drug design, molecular descriptor, multivariate regression, neural network, pharmacyAbstract
Prediction of bioavailability is a crucial aspect of drug development and formulation design. Aim. To investigate the possibility of predicting the bioavailability of oral drug compounds based on molecular descriptors by means of feedforward neural network. Materials and methods. Software ChemOffice 2020 was used for calculation molecular descriptors from the drug structures. Software Matlab R2022b was used for building the multivariate regression between molecular descriptors and bioavailability as well as feedforward neural network. For each of the 145 drug molecules 16 molecular descriptors were calculated. Of the 145 compounds, 10 were randomly selected for use as a test subset, 5 compounds – as a validation subset. The remaining 130 compounds were used to train feedforward neural network. Results and discussion. It is established that there are 7 the most informativeness molecular descriptors for oral drug bioavailability prediction: molecular weight, hydrogen bond acceptors, hydrogen bond donors, partition coefficient, Balaban index, molecular topological index, Wiener index (multiple coefficient of determination is equal to 0,3701). Optimal number of hidden neurons for effective realization feedforward neural network was found by experimental way and its equal to 16. Trained feedforward neural network with 16 hidden neurons was used for predicting bioavailability values for test and validation subsets. Conclusions. Feedforward neural network is the effective tool for prediction of oral drug bioavailability based on chemical structure. This is evidenced by high values of determination coefficient between predicted bioavailability values and experimental bioavailability values for test and validation subsets (0,7084 and 0,8432, correspondingly). Obtained results can be useful at the stage of experiment planning or drug design.
References
Пушкарьова Я. М., Калюженко А. В. Прогнозування ступеня небезпечності / ризику залишкових розчинників у лікарських засобах методами хемометрії. Фармацевтичний часопис. 2023. № 3. С. 16–25. DOI: 10.11603/2312-0967.2023.3.13985.
Феденько С., Волошенюк Т., Різак Г. Аналіз впливу інноваційних технологій на розвиток фармацевтичного ринку в Україні. Сучасна медицина, фармація та психологічне здоров’я. 2024. Випуск 2 (16). С. 106–110. DOI: 10.32689/2663-0672-2024-2-17.
Chagas C. M., Moss S., Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. International Journal of Pharmaceutics. 2018. Vol. 549, no. 1–2. P. 133–149. DOI: 10.1016/j.ijpharm.2018.07.046.
Guha S., Jana R. K., Sanyal M. K. Artificial Neural Network approaches for disaster management: A literature review (2010–2021). International Journal of Disaster Risk Reduction. 2022. Vol. 81. P. 103276. DOI: 10.1016/j.ijdrr.2022.103276.
Houssein E. H., Hosney M. E., Emam M. M., Oliva D., Younis E. M., Ali A. A., Mohamed W. M. Optimizing feedforward neural networks using a modified weighted mean of vectors: Case study chemical datasets. Swarm and Evolutionary Computation. 2024. Vol. 89. P. 101656. DOI: 10.1016/j.swevo.2024.101656.
Ma L., Yan Y., Dai S., Shao D., Yi S., Wang J., ... Yan, J. Research on prediction of human oral bioavailability of drugs based on improved deep forest. Journal of Molecular Graphics and Modelling. 2024. Vol. 133. P. 108851. DOI: 10.1016/j.jmgm.2024.108851.
Mumali F. Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review. Computers & Industrial Engineering. 2022. Vol. 165. P. 107964. DOI: 10.1016/j.cie.2022.107964.
Mutihac L., Mutihac R. Mining in chemometrics. Analytica Chimica Acta. 2008. Vol. 612, no. 1. P. 1–18. DOI: 10.1016/j.aca.2008.02.025.
Pushkarova Y., Zaitseva G., Saker M. A. Prediction of Toxicity of Phenols Using Artificial Neural Networks. 12th International Conference on Advanced Computer Information Technologies (ACIT), Slovakia, 26–28 September 2022. 2022. DOI: 10.1109/acit54803.2022.9913174.
Turner J. V., Glass B. D., Agatonovic-Kustrin S. Prediction of drug bioavailability based on molecular structure. Analytica Chimica Acta. 2003. Vol. 485, no. 1. P. 89–102. DOI: 10.1016/s0003-2670(03)00406-9.
Yang Q., Fan L., Hao E., Hou X., Deng J., Xia Z., Du Z. Construction of An Oral Bioavailability Prediction Model Based on Machine Learning for Evaluating Molecular Modifications. Journal of Pharmaceutical Sciences. 2024. Vol. 113. P. 1155–1167. DOI: 10.1016/j.xphs.2024.02.026.