THEORETICAL ASPECTS OF THE DEVELOPMENT OF THE HUMAN FACE RECOGNITION SYSTEM

Authors

DOI:

https://doi.org/10.32689/maup.it.2022.1.1

Keywords:

recognition, neural networks, recognition methods

Abstract

Abstract. Face Detection System is a technology that compares a human face with a digital image or video frame to a database of individuals, commonly used to authenticate users through identity verification services, and works by accurately identifying and measuring facial features in a given image. Facial recognition systems are used today by governments and private companies around the world, their effectiveness varies, and some systems have previously been written off because of their ineffectiveness. Thus, the creation of a program for human face recognition is a topical issue. The aim of the article is to study the theoretical aspects of developing a human face recognition system. The face recognition procedure simply requires that any device equipped with digital photographic technology generate and obtain the images and data necessary to create and record a biometric image of the person to be identified. The main algorithms of human face recognition are considered: face recognition using different face surfaces, Fisher 's face method, principal components analysis method and machine of reference vectors, Haar cascade method. Their advantages and disadvantages are given. The application of convolutional neural network to face recognition is presented. The implementation of the algorithm of the face recognition system is proposed. This paper analyzes the existing algorithms and systems for face detection and recognition, weighing their advantages and disadvantages. The use of convolutional neural system for facial recognition is considered. The percentage of human face recognition accuracy and performance were analyzed in practice, taking into account factors such as lighting, image quality, number of faces in the image using the face recognition library Face recognition from the DLib family of libraries based on convolutional neural network.

References

L. Zhi-fang, Y. Zhi-sheng, A.K.Jain and W. Yun-qiong, 2003, “Face Detection And Facial Feature Extraction In Color Image”, Proc. The Fifth International Conference on Computational Intelligence and Multimedia Applications (ICCIMA’03), pp. 126-130, Xi’an, China.

C. Lin, 2005, “Face Detection By Color And Multilayer Feedforward Neural Network”, Proc. 2005 IEEE International Conference on Information Acquisition, pp. 518-523, Hong Kong and Macau, China.

S. Kherchaoui and A. Houacine, 2010, “Face Detection Based On A Model Of The Skin Color With Constraints And Template Matching”, Proc. 2010 International Conference on Machine and Web Intelligence, pp. 469–472, Algiers, Algeria.

P. Peer, J. Kovac and F. Solina, 2003, “Robust Human Face Detection in Complicated Color Images”, Proc. 2010 The 2nd IEEE International Conference on Information Management and Engineering (ICIME), pp. 218–221, Chengdu, China.

M. Ş. Bayhan and M. Gökmen, 2008, “Scale And Pose Invariant Real-Time Face Detection And Tracking”, Proc. 23rd International Symposium on Computer and Information Sciences ISCIS '08, pp. 1-6, Istanbul, Turkey.

C.C. Tsai, W.C. Cheng, J.S. Taur and C.W. Tao, 2006, “Face Detection Using Eigenface And Neural Network”, Proc. 2006 IEEE International Conference on Systems, Man, and Cybernetics, pp. 4343-4347, Taipei, Taiwan.

X. Liu, G. Geng and X. Wang, 2010, “Automatically Face Detection Based On BP Neural Network And Bayesian Decision”, Proc. 2010 Sixth International Conference on Natural Computation (ICNC 2010), pp. 1590-1594, Shandong, China.

M. Tayyab and M. F. Zafar, 2009, “Face Detection Using 2D-Discrete Cosine Transform And Back Propagation Neural Network”, Proc. 2009 International Conference on Emerging Technologies, pp. 35-39, Islamabad, Pakistan.

Палій І.О., Саченко А.О., Антощук С.Г., Бурак Т.О. Нейромережний підхід до комп’ютерного розпізнавання облич // Искусственный интеллект, Вип. 3, 2010. С. 378-387.

Тимошин Ю. А., Орленко С. П. Алгоритм розпізнавання обличчя людей на базі згорткової нейронної мережі // Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління», Вип. 1 (32), 2018. С. 166–173.

Ляшенко Г.Є., Даниленко О.І. Дослідження методів розпізнавання облич // Міжнародна науково-практична конференція High-Technologies in infocommunications 23-25 травня 2019 р., Харків – Кам’янець-Подільський, Україна. С. 85-86.

Загородня Д. І., Палій І. О., Крилов В. М. Метод розпізнавання облич за характерними точками контуру в комп’ютерних системах відеоспостереження // МНПК «Сучасні інформаційні та електронні технології». Одеса, 27–31 травня 2013 р. С. 49-52.

Ділай В.І. Огляд методів розпізнавання облич для використання в системах контролю і управління доступом //Матеріали VІІ Міжнародної науково-технічної конференції молодих учених та студентів. Актуальні задачі сучасних технологій – Тернопіль 28-29 листопада 2018. С. 48-49.

Published

2022-05-12

How to Cite

ВАКАЛЮК, Т., ІЛЮЩЕНКО, С., ЄФРЕМОВ, Ю., ВЛАСЕНКО, О., & ЛИСОГОР, Д. (2022). THEORETICAL ASPECTS OF THE DEVELOPMENT OF THE HUMAN FACE RECOGNITION SYSTEM. Information Technology and Society, (1 (3), 6-15. https://doi.org/10.32689/maup.it.2022.1.1