AUTOMATION OF THE PROCESS OF ANALYSIS AND CHECKING OF STUDENT QUALIFICATION PAPERS
DOI:
https://doi.org/10.32689/maup.it.2023.3.10Keywords:
qualification paper; analysis of qualification papers; spell checking; design checking; normative control; cloud technologies; serverless architectureAbstract
Background. A common form of attestation for students of higher education is the performance of a qualification work, an integral component of which is its textual part. Today, the process of checking the text part is practically not automated and is based on the efforts of employees of graduate departments. Objective. To reduce the average number of errors in qualifying papers due to the possibility of self-checking by students during the writing of papers, by automating the checking process. Methods. Errors that can be made by students when writing qualification papers are divided into three groups: errors of technical design, errors of logical design, and grammatical errors. For each group, the existing tools that can prevent and detect errors of this group are considered, and those classes of errors are defined, on which prevention and detection of automatic verification information systems should be specialized. As an example, with the help of cloud technologies, such an information system was developed that implements 9 error detection rules. Results. The evaluation of the effectiveness of the automation of the process of checking qualification papers was carried out on the example of the developed information system through the analysis of sixty-four qualification papers of the past two years, which were performed by students of two different structural units. For the vast majority of implemented rules (seven out of nine), a non-zero number of true activations was obtained. At the same time, the number of true activations is less than the number of false activations for only one rule among these seven. Conclusions. The experimental verification of the developed information system proved the effectiveness (according to the criterion of reducing the average number of errors) of the automation of the process of analysis of qualifying papers because all the detected errors could have been detected even during the writing of the papers by the students themselves.
References
Положення про екзаменаційну комісію та атестацію здобувачів вищої освіти в КПІ ім. Ігоря Сікорського. КПІ ім. Ігоря Сікорського. Київ, 2020.
Положення про організацію освітнього процесу у Київському національному університеті імені Тараса Шевченка (друга редакція). КНУ ім. Тараса Шевченка. Київ, 2022.
Положення про систему виявлення та запобігання академічному плагіату у Київському національному університеті імені Тараса Шевченка. КНУ ім. Тараса Шевченка. Київ, 2020.
Положення про систему запобігання академічному плагіату в КПІ ім. Ігоря Сікорського. КПІ ім. Ігоря Сікорського. Київ, 2020.
Roberts M. Serverless Architectures // martinFowler.com. 2018. URL: https://martinfowler.com/articles/serverless.html.
Wen J. et al. Rise of the Planet of Serverless Computing: A Systematic Review // ACM Transactions on Software Engineering and Methodology. 2023. 5 (32). P. 1-61.
Azure Functions – Serverless Apps and Computing. Microsoft Azure. 2016. URL: https://azure.microsoft.com/en-us/services/functions/.
GitHub Pages. GitHub. 2009. URL: https://pages.github.com/.
GitHub. Features. GitHub Actions. GitHub. 2018. URL: https://github.com/features/actions.
ДСТУ 8302:2015. Інформація та документація. Бібліографічне посилання. ДСТУ. 2015.
Publication Manual of the American Psychological Association, Seventh Edition. American Psychological Association. 2020.
Український правопис. Українська національна комісія з питань правопису. 2019.
ISO/IEC 29500-1:2016. Information technology – Document description and processing languages – Office Open XML File Formats – Part 1: Fundamentals and Markup Language Reference. ISO. 2016.