IMPROVING NOISE IMMUNITY AND INCREASING DATA TRANSMISSION SPEED IN WI-FI NETWORKS

Authors

DOI:

https://doi.org/10.32689/maup.it.2024.1.13

Keywords:

Wi-Fi network, space-time coding, MIMO technology, Alamouti decoding, binary phase manipulation

Abstract

Wireless communication systems, including computer Wi-Fi networks, are currently undergoing intensive development. The radio communication channels of such systems are subject to a complex of interference and distortion. To improve such parameters as performance and interference resistance, especially in conditions of dense use of a rather limited frequency channel, there is a need to improve existing methods and create fundamentally new ones. The purpose of the article is to review the methods of information transmission in modern wireless access systems and to study algorithms for increasing network capacity by applying adaptive spatial signal processing methods and finding a balance between increasing the throughput of MIMO technology and reducing the probability of reception errors. Research methods: the study uses methods of information transmission in modern wireless access systems and algorithms for increasing network capacity. The scientific novelty of the study is that the analysis of modern methods of wireless information transmission revealed that space-time coding successfully combines the advantages of spatial diversity methods with the ability to correct errors with a corrective code when using optimal decoding algorithms, while the effectiveness of research and development of new methods of space-time coding largely depends on how well the channel models match real-world conditions. One of the promising methods for improving network quality parameters is the method of synthesizing convolutional-block signal-code structures using internal signals from the class of space-time block coding and external signal structures, which is an effective technique for reducing the effect of fading on signals, improving the quality and throughput of the Wi-Fi communication system. Conclusions. The development of these algorithms and methods opens up broad prospects for the future development of wireless communication systems. One of the key prospects is to further improve the methods of adaptive spatial signal processing and optimize the balance between increasing throughput and reducing the probability of reception errors. Additionally, the capabilities of convolutional-block signal-code designs can be expanded by researching and implementing new technologies, such as using machine learning to optimize signal coding and decoding parameters. There are also opportunities to apply these techniques to high-speed mobile networks, such as fifth generation (5G) and future generations, where high bandwidth and data efficiency are becoming key requirements.

References

Губарев В.Ф., Романенко В.Д. Етапи та основні завдання столітньої теорії контролю і розробка системи ідентифікації. Частина 3. Проблема ідентифікації складних систем за неточними даними. International Scientific Technical Journal "Problems of Control and Informatics". 69, 1 (Груд 2023), 5–23. DOI: 10.34229/1028-0979-2024-1-1.

Іщенко М.О. Сигнально-кодові конструкції для систем безпроводового зв′язку з просторово-часовим кодуванням: Автореф. дис. к.т.н. /. ОНАЗ. – Одеса, 2009. 150 с.

Могилевич Д., Погребняк Л. Аналітична модель OFDM-MIMO сигналу у нестаціонарних каналах зв’язку із завмираннями. Collection "Information Technology and Security". Vol. 11. Iss. 1 (20) (Jun. 2023), 39–46. DOI: 10.20535/2411-1031.2023.11.1.283538.

Alamouti S. M. A Simple Transmit Diversity Technique for Wireless Communications. IEEE J. Select. Areas Communication. –Vol. 16. No. 8.– 1998. – P. 1451–1458.

Banket V.L. Downlink Processing Algorithms for Multi-Antenna Wireless Communications. IEEE Communications Magazine. – 2005. No.1 P. 45–48.

Calderbank A.R. Space-Time Block Coding from Orthogonal Designs. IEEE Trans. on Inform. Theory. – 1999. – Vol. 45. – No. 5. P. 1456–1467.

Calderbank A.R. Space-time coding and signal processing for high data rate wireless communications. Wireless, Communications and Mobile Computing. – 2001. – No.1. P. 13–34.

Duman T.M., Ghrayeb A. Coding for MIMO Communication Systems. – Chichester, UK: John Wiley & Sons, 2007. 338 p.

Erceg V. Channel models for fixed wireless applications. IEEE Tech.Report, IEEE 802.16 Work Group, 2001.

Erceg V. Channel models for fixed wireless applications. Revised Version of the document IEEE 802.16.3c-01/29r4. IEEE Tech.Report, IEEE 802.16 Work Group, 2003.

Feher K. Wireless digital communications. New Jersey: Prentice-Hall PTR. 1999. 520 p.

Foschini G. Layered space – time architecture for wireless communication in a fading environment when using multielement antennas. Bell Laboratories Technical Journal. – 1996. – Vol. 4, Autum. P. 41–59.

George T. MIMO System Technology for Wireless Communications. – CRC Press, USA, 2006.

Gesbert D. From Theory to Practice: An Overview of MIMO Space – Time Coded Wireless Systems. IEEE Journal on selected areas in communications. – 2003.– Vol. SAC – 21, No.3. P. 281–302.

History of MIMO in radiocommunications. URL: http://en.wikipedia.org/wiki/MIMO.

Hohwald B., Marzetta T. Systematic Design of Unitary Space – Time Constellations. IEEE Trans. on Inform. Theory. – 2000. – Vol. 46. – No. 6. P. 1962–1973.

Jankiraman M. Space-time codes and MIMO systems. – Artech House, 2004. P. 344.

Lau B. K., Ow S. M. S., Kristensson G., Molisch A. F. Capacity Analysis for Compact MIMO Systems. IEEE Vehicular Technology Conference (VTC) (ISSN; 1550-2251). – IEEE Xplore, 2005. – Vol. 1. P. 165–170.

Lee S.J. et al. A Space-Time Code with full Diversity and Rate 2 for 2 Transmit Antenna Transmission. IEEE C802.16e-04/434r2, 2004.

Mohammed M. A., Vodichev V. Modeling of MIMO systems with universal controller. Electrotechnic and Computer Systems. 37 (113) (Sep. 2023), 26–32. DOI: 10.15276/eltecs.37.113.2023.03.

Shcherbina A.A. Effect of antenna mutual coupling on MIMO channel capacity. IX International Conference on Antenna Theory and Tech-niques (ICATT-2013), Odesa, Ukraine 16-20 September 2013, p. 178–180.

Wang D. Super-Ortogonal Differerntial Trellis Coding and Decoding. IEEE Journal on Selected Areas in Communications – 2003 – Vol. 23, No.9. P. 1768–1798.

WLAN Tests: According to Standard IEEE 802.11a/b/g. Rohde & Schwarz GmbH & Co. K URL: https://cdn.rohde–schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma69/1MA69_2e.pdf.

Published

2024-07-01

How to Cite

ТИМЧУК, С., БАРАНОВА, І., ПІСКАРЬОВ, О., РАДЧЕНКО, С., & ЮРЧЕНКО, Т. (2024). IMPROVING NOISE IMMUNITY AND INCREASING DATA TRANSMISSION SPEED IN WI-FI NETWORKS. Information Technology and Society, (1 (12), 88-95. https://doi.org/10.32689/maup.it.2024.1.13