THE USE OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN SCIENTOMETRIC SYSTEMS AND DATABASES

Authors

DOI:

https://doi.org/10.32689/maup.it.2025.1.19

Keywords:

innovative technologies, machine learning, scientometrics, scientific publication management, artificial intelligence

Abstract

In today's scientific environment, the use of innovative technologies in scientific publication management systems, in particular artificial intelligence and machine learning, plays a key role in improving the efficiency and accuracy of processing and analysing large amounts of scientific information. This study aims to explore the potential and benefits of using artificial intelligence and machine learning in scientific publication management systems. The main purpose of this study is to unlock the potential of artificial intelligence and machine learning to improve the efficiency of scientific publication management. An analysis of recent research and publications has shown that the use of artificial intelligence allows automating the processes of classifying and analysing scientific publications, which helps to identify new scientific trends and increases the speed of decision-making. Machine learning, on the other hand, provides the ability to create predictive models that help forecast the development of scientific disciplines and determine their impact. The article analyses modern approaches to managing scientific publications and explores the possibilities of using artificial intelligence and machine learning to optimise them. The article also considers the problems of accuracy and objectivity of scientific activity assessment, which can be solved with the help of innovative technologies. The scientific novelty of this work is to study and analyse the use of artificial intelligence and machine learning in scientific publication management systems with a focus on scientometric systems and databases. The results of the analysis indicate that the integration of innovative technologies into scientific publication management systems will significantly improve the quality and speed of processing scientific information, as well as contribute to an objective assessment of scientific activity. It is suggested that these results should be taken into account when developing and improving scientific publication management systems to ensure a more efficient and innovative approach to scientific activity.

References

Колесніков А. П., Карапетян О. М. Штучний інтелект: переваги та загрози використання. Ефективна економіка. 2023. № 8. С. 1–13. DOI: 10.32702/2307-2105.2023.8.9.

Луніна К. І., Загоруйко І. В. Наукометрічні бази даних. Репозиторій ХНЕУ імені С. Кузнеця. Харків, 2021. URL: http://repository.hneu.edu.ua/handle/123456789/25875.

Мінтій І. С., Іванова С. М. Огляд наукометричних баз Google Scholar та ORCID. Звітна науково-практична конференція Інституту інформаційних технологій і засобів навчання НАПН України / ІІТЗН НАПН. Київ, 2021. С. 63–66. DOI: 10.31812/123456789/5085.

Мриглод О. І., Назаровець С. А. Наукометрія та управління науковою діяльністю: вкотре про світове та українське. Вісник НАН України. 2019. № 9. С. 81–94. DOI: 10.15407/visn2019.09.081.

Назаровець С. А. Бази даних цитувань та пошукові інструменти для науковців майбутнього. Світогляд. 2021. № 16. С. 35–38. URL: http://eprints.rclis.org/41839/1/svit-1-2021-nazarovets-11.pdf.

Штучний інтелект. Машинне навчання / Григоров О. В. та ін. Автомобіль і електроніка. Сучасні технології. 2019. № 5. С. 17–27. DOI: 10.30977/VEIT.2019.15.0.17.

Ярошенко О. Наукометрія. Електронний архів Національного університету «Києво-Могилянська академія». 2020. URL: https://ekmair.ukma.edu.ua/handle/123456789/18929.

Clarivate. URL: https://clarivate.com/.

Google Scholar. URL: https://scholar.google.com/.

Kharlamova G., Stavytskyy A. The Use of Artificial Intelligence in Academic Publishing: Preliminary Remarks and Perspectives. Access to Justice in Eastern Europe. 2023. № 21. С. 1–12. DOI: 10.33327/AJEE-18-6.3-n000319.

PLOS. URL: https://plos.org/.

Scientists are publishing too many papers–and that’s bad for science. ScienceAdvisor. 2023. URL: https://www.science.org/content/article/scienceadviser-scientists-are-publishing-too-many-papers-and-s-bad-science.

Scopus. URL: https://www.scopus.com/.

Shelehov, I., Dovbysh, A., Olefirenko D. Optimization of control tolerances for recognition features in information extremal methods of automatic classification. The IX International Scientific and Practical Conference «Research of young scientists: from idea generation to project implementation»: 2024. C. 228–235.

Shelehov I., Prylepa D., Khibovska Y., Otroshcenko M. Machine learning decision support systems for adaptation of educational content to the labor market requirements. Radio electronics computer science control. 2023. 1. C. 62–72. DOI: 10.15588/1607-3274-2023-1-6.

Published

2025-05-28

How to Cite

ОБОДЯК, В., & ОТРОЩЕНКО, М. (2025). THE USE OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN SCIENTOMETRIC SYSTEMS AND DATABASES. Information Technology and Society, (1 (16), 151-156. https://doi.org/10.32689/maup.it.2025.1.19