NON-CYCLOOXYGENASE SIGNALING PATHWAYS AS A MECHANISM OF THERAPEUTIC ACTIVITY OF NONSTEROIDAL ANTI-INFLAMMATORY DRUGS IN ANTICANCER THERAPY

Authors

DOI:

https://doi.org/10.32689/2663-0672-2023-1-3

Keywords:

non-steroidal anti-inflammatory drugs, extra-cyclooxygenase effects, PI3K/Akt/mTOR, PI3K/PTEN/Akt, NAG-1, Wnt/β-catenin

Abstract

Introduction. Inflammation is closely related to the tumor process and plays a key role in the formation and progression of neoplasms. Tumor cells are phenotypically similar to inflammatory cells because they express cytokines, chemokines and their receptors. In recent decades, nonsteroidal anti-inflammatory drugs (NSAIDs) have been found to reduce mortality from certain types of cancer, such as colon, ovarian, prostate, skin, esophagus, pancreas, breast, bladder, head and neck, and also with hepatocellular carcinoma. Elucidation of the role of inflammatory mediators in tumorigenesis, angiogenesis, and metastasis in recent years, as well as data from epidemiological studies of the effectiveness of NSAIDs in the prevention of cancer diseases, create prerequisites for active research into the molecular mechanisms of the anticancer activity of drugs of this group. The aim of the study was to summarize the current information on cyclooxygenase-independent signaling pathways that are affected by NSAIDs as possible targets in the treatment of cancer patients. Materials and methods. Publications were selected based on PubMed, Clinical Key Elsevier, Cochrane Library, etc. databases, which covered information on the use of NSAIDs in the treatment of oncological diseases. Research results and their discussion. Activation of mitogen-activated kinases (MAPK), the NF-κB pathway, the PI3K/Akt/ mTOR pathway, and the Wnt/β-catenin pathway affects the key processes of tumor growth, metastasis, and apoptosis in cancer cells. Inhibition of these signaling pathways with NSAIDs can inhibit cell growth, promote apoptosis, and reduce invasiveness of cancer cells. In addition, the identification of genes regulated by NSAIDs opens up opportunities for further understanding of the molecular mechanisms of the antitumor activity of these drugs. Research in the field of signaling pathways shows the potential effectiveness of NSAIDs in the treatment of various types of cancer and the expansion of their use in anticancer therapy. Conclusions. Studies of non-cyclooxygenase effects of NSAIDs serve as a basis for conducting clinical studies of new approaches to the regulation of tumor signaling pathways and open perspectives for improving cancer treatment strategies.

References

Zappavigna, S., Cossu, A. M., Grimaldi, A., Bocchetti, M., Ferraro, G. A., Nicoletti, G. F., Filosa, R., & Caraglia, M. (2020). Anti-Inflammatory Drugs as Anticancer Agents. International journal of molecular sciences, 21(7), 2605. https://doi.org/10.3390/ijms21072605

Kazberuk, A., Zareba, I., Palka, J., & Surazynski, A. (2020). A novel plausible mechanism of NSAIDs-induced apoptosis in cancer cells: the implication of proline oxidase and peroxisome proliferator-activated receptor. Pharmacological reports : PR, 72(5), 1152–1160. https://doi.org/10.1007/s43440-020-00140-z

Kune, G. A., Kune, S., & Watson, L. F. (1988). Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer research, 48(15), 4399–4404.

Kolawole, O. R., & Kashfi, K. (2022). NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. International journal of molecular sciences, 23(3), 1432. https://doi.org/10.3390/ijms23031432

Mahmud, S., & Rosen, N. (2019). History of NSAID Use in the Treatment of Headaches Pre and Post-industrial Revolution in the United States: the Rise and Fall of Antipyrine, Salicylic Acid, and Acetanilide. Current pain and headache reports, 23(1), 6. https://doi.org/10.1007/s11916-019-0744-6

Ye, Y., Wang, X., Jeschke, U., & von Schönfeldt, V. (2020). COX-2-PGE2-EPs in gynecological cancers. Archives of gynecology and obstetrics, 301(6), 1365–1375. https://doi.org/10.1007/s00404-020-05559-6

Regulski, M., Regulska, K., Prukała, W., Piotrowska, H., Stanisz, B., & Murias, M. (2016). COX-2 inhibitors: a novel strategy in the management of breast cancer. Drug discovery today, 21(4), 598–615. https://doi.org/10.1016/j.drudis.2015.12.003

Nagaraju, G. P., & El-Rayes, B. F. (2019). Cyclooxygenase-2 in gastrointestinal malignancies. Cancer, 125(8), 1221–1227. https://doi.org/10.1002/cncr.32010

Hugo, H. J., Saunders, C., Ramsay, R. G., & Thompson, E. W. (2015). New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. Journal of mammary gland biology and neoplasia, 20(3-4), 109–119. https://doi.org/10.1007/s10911-015-9333-4

Frejborg, E., Salo, T., & Salem, A. (2020). Role of Cyclooxygenase-2 in Head and Neck Tumorigenesis. International journal of molecular sciences, 21(23), 9246. https://doi.org/10.3390/ijms21239246

Yang, C. C., & Chang, K. W. (2018). Eicosanoids and HB-EGF/EGFR in cancer. Cancer metastasis reviews, 37(2-3), 385–395. https://doi.org/10.1007/s10555-018-9746-9

Lin, D. T., Subbaramaiah, K., Shah, J. P., Dannenberg, A. J., & Boyle, J. O. (2002). Cyclooxygenase-2: a novel molecular target for the prevention and treatment of head and neck cancer. Head & neck, 24(8), 792–799. https://doi.org/10.1002/hed.10108

Kolawole, O. R., & Kashfi, K. (2022). NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. International journal of molecular sciences, 23(3), 1432. https://doi.org/10.3390/ijms23031432

Husain, S. S., Szabo, I. L., Pai, R., Soreghan, B., Jones, M. K., & Tarnawski, A. S. (2001). MAPK (ERK2) kinase--a key target for NSAIDs-induced inhibition of gastric cancer cell proliferation and growth. Life sciences, 69(25-26), 3045–3054. https://doi.org/10.1016/s0024-3205(01)01411-4

Ou, Y. C., Yang, C. R., Cheng, C. L., Raung, S. L., Hung, Y. Y., & Chen, C. J. (2007). Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT. European journal of pharmacology, 563(1-3), 49–60. https://doi.org/10.1016/j.ejphar.2007.01.071

Kim, T. I., Jin, S. H., Kim, W. H., Kang, E. H., Choi, K. Y., Kim, H. J., Shin, S. K., & Kang, J. K. (2001). Prolonged activation of mitogen-activated protein kinases during NSAID-induced apoptosis in HT-29 colon cancer cells. International journal of colorectal disease, 16(3), 167–173. https://doi.org/10.1007/s003840100301

Setia, S., Nehru, B., & Sanyal, S. N. (2014). Upregulation of MAPK/Erk and PI3K/Akt pathways in ulcerative colitisassociated colon cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 68(8), 1023–1029. https://doi.org/10.1016/j.biopha.2014.09.006

Jia, Z., Zhang, H., Ma, C., Li, N., & Wang, M. (2021). Celecoxib enhances apoptosis of the liver cancer cells via regulating ERK/JNK/P38 pathway. Journal of B.U.ON. : official journal of the Balkan Union of Oncology, 26(3), 875–881.

Park, S. W., Kim, H. S., Hah, J. W., Jeong, W. J., Kim, K. H., & Sung, M. W. (2010). Celecoxib inhibits cell proliferation through the activation of ERK and p38 MAPK in head and neck squamous cell carcinoma cell lines. Anti-cancer drugs, 21(9), 823–830. https://doi.org/10.1097/CAD.0b013e32833dada8

Fan, Y., Mao, R., & Yang, J. (2013). NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein & cell, 4(3), 176–185. https://doi.org/10.1007/s13238-013-2084-3

Park, M. H., & Hong, J. T. (2016). Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells, 5(2), 15. https://doi.org/10.3390/cells5020015

Cho, M., Gwak, J., Park, S., Won, J., Kim, D. E., Yea, S. S., Cha, I. J., Kim, T. K., Shin, J. G., & Oh, S. (2005). Diclofenac attenuates Wnt/beta-catenin signaling in colon cancer cells by activation of NF-kappaB. FEBS letters, 579(20), 4213–4218. https://doi.org/10.1016/j.febslet.2005.06.049

Stark, L. A., Din, F. V., Zwacka, R. M., & Dunlop, M. G. (2001). Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 15(7), 1273–1275.

Drew, D. A., Cao, Y., & Chan, A. T. (2016). Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature reviews. Cancer, 16(3), 173–186. https://doi.org/10.1038/nrc.2016.4

Butler, D. E., Marlein, C., Walker, H. F., Frame, F. M., Mann, V. M., Simms, M. S., Davies, B. R., Collins, A. T., & Maitland, N. J. (2017). Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget, 8(34), 56698–56713. https://doi.org/10.18632/oncotarget.18082

Lu, Y., Liu, X. F., Liu, T. R., Fan, R. F., Xu, Y. C., Zhang, X. Z., & Liu, L. L. (2016). Celecoxib exerts antitumor effects in HL-60 acute leukemia cells and inhibits autophagy by affecting lysosome function. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 84, 1551–1557. https://doi.org/10.1016/j.biopha.2016.11.026

Cai, Y., Yousef, A., Grandis, J. R., & Johnson, D. E. (2020). NSAID therapy for PIK3CA-Altered colorectal, breast, and head and neck cancer. Advances in biological regulation, 75, 100653. https://doi.org/10.1016/j.jbior.2019.100653

Danielsen, S. A., Eide, P. W., Nesbakken, A., Guren, T., Leithe, E., & Lothe, R. A. (2015). Portrait of the PI3K/AKT pathway in colorectal cancer. Biochimica et biophysica acta, 1855(1), 104–121. https://doi.org/10.1016/j.bbcan.2014.09.008

Lui, V. W., Hedberg, M. L., Li, H., Vangara, B. S., Pendleton, K., Zeng, Y., Lu, Y., Zhang, Q., Du, Y., Gilbert, B. R., Freilino, M., Sauerwein, S., Peyser, N. D., Xiao, D., Diergaarde, B., Wang, L., Chiosea, S., Seethala, R., Johnson, J. T., Kim, S., Grandis, J. R. (2013). Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer discovery, 3(7), 761–769. https://doi.org/10.1158/2159-8290.CD-13-0103

Noorolyai, S., Shajari, N., Baghbani, E., Sadreddini, S., & Baradaran, B. (2019). The relation between PI3K/AKT signalling pathway and cancer. Gene, 698, 120–128. https://doi.org/10.1016/j.gene.2019.02.076

Lim, H. J., Crowe, P., & Yang, J. L. (2015). Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. Journal of cancer research and clinical oncology, 141(4), 671–689. https://doi.org/10.1007/s00432-014-1803-3

Heidel, F. H., Bullinger, L., Feng, Z., Wang, Z., Neff, T. A., Stein, L., Kalaitzidis, D., Lane, S. W., & Armstrong, S. A. (2012). Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell stem cell, 10(4), 412–424. https://doi.org/10.1016/j.stem.2012.02.017

Sareddy, G. R., Kesanakurti, D., Kirti, P. B., & Babu, P. P. (2013). Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/β-catenin/Tcf signaling pathway in human glioblastoma cells. Neurochemical research, 38(11), 2313–2322. https://doi.org/10.1007/s11064-013-1142-9

Huang, C., Chen, Y., Liu, H., Yang, J., Song, X., Zhao, J., He, N., Zhou, C. J., Wang, Y., Huang, C., & Dong, Q. (2017). Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget, 8(70), 115254–115269. https://doi.org/10.18632/oncotarget.23250

Baek, S. J., Kim, K. S., Nixon, J. B., Wilson, L. C., & Eling, T. E. (2001). Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Molecular pharmacology, 59(4), 901–908.

Jang, T. J., Kang, H. J., Kim, J. R., & Yang, C. H. (2004). Non-steroidal anti-inflammatory drug activated gene (NAG-1) expression is closely related to death receptor-4 and -5 induction, which may explain sulindac sulfide induced gastric cancer cell apoptosis. Carcinogenesis, 25(10), 1853–1858. https://doi.org/10.1093/carcin/bgh199

Huang, M. T., Chen, Z. X., Wei, B., Zhang, B., Wang, C. H., Huang, M. H., Liu, R., & Tang, C. W. (2007). Preoperative growth inhibition of human gastric adenocarcinoma treated with a combination of celecoxib and octreotide. Acta pharmacologica Sinica, 28(11), 1842–1850. https://doi.org/10.1111/j.1745-7254.2007.00652.x

Iguchi, G., Chrysovergis, K., Lee, S. H., Baek, S. J., Langenbach, R., & Eling, T. E. (2009). A reciprocal relationship exists between non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) and cyclooxygenase-2. Cancer letters, 282(2), 152–158. https://doi.org/10.1016/j.canlet.2009.03.006

Wynne, S., & Djakiew, D. (2010). NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 Induction via the p38 MAPK-p75(NTR) pathway. Molecular cancer research: MCR, 8(12), 1656–1664. https://doi.org/10.1158/1541-7786. MCR-10-0342

Michalik, L., Auwerx, J., Berger, J. P., Chatterjee, V. K., Glass, C. K., Gonzalez, F. J., Grimaldi, P. A., Kadowaki, T., Lazar, M. A., O'Rahilly, S., Palmer, C. N., Plutzky, J., Reddy, J. K., Spiegelman, B. M., Staels, B., & Wahli, W. (2006). International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacological reviews, 58(4), 726–741. https://doi.org/10.1124/pr.58.4.5

Azevedo, M. F., Faucz, F. R., Bimpaki, E., Horvath, A., Levy, I., de Alexandre, R. B., Ahmad, F., Manganiello, V., & Stratakis, C. A. (2014). Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocrine reviews, 35(2), 195–233. https://doi.org/10.1210/er.2013-1053

Cory, S., & Adams, J. M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nature reviews. Cancer, 2(9), 647–656. https://doi.org/10.1038/nrc883

Published

2023-08-18

How to Cite

ГЛАДКИХ, Ф. (2023). NON-CYCLOOXYGENASE SIGNALING PATHWAYS AS A MECHANISM OF THERAPEUTIC ACTIVITY OF NONSTEROIDAL ANTI-INFLAMMATORY DRUGS IN ANTICANCER THERAPY. Modern Medicine, Pharmacy and Psychological Health, (1(10), 26-31. https://doi.org/10.32689/2663-0672-2023-1-3