ALGORITHM FOR PROVIDING MEDICAL CARE TO CHILDREN WITH AUTISM SPECTRUM DISORDERS ASSOCIATED WITH GENETIC DEFICIENCY OF THE FOLATE CYCLE

Authors

  • Dmytro MALTSEV Bogomolets National Medical University

Keywords:

children, autism spectrum disorders, genetic deficiency of the folate cycle, medical care, protocol

Abstract

Formulation of the problem. The regulation of medical care for children with mental disorders of the autism spectrum, which are associated with mutations / polymorphisms of genes of folic acid cycle enzymes, required the development of an appropriate algorithm for medical care. Analysis of recent research and publications. Genetic deficiency of the folate cycle – a common genetic disorder in the population, associated with disruption of DNA methylation and hyperhomocysteinemia, has different clinical manifestations during different periods of ontogenesis, leading to the development of autism in young children. The data contained in this protocol are based on the results of meta- analyzes and systematic reviews of randomized controlled trials, actually randomized controlled clinical trials and non-randomized controlled trials published in international scientometric databases of peer-reviewed periodicals PubMUS, Embase, SCOP. The information provided in the protocol is largely based on the data presented and systematized in a scientific monograph (Maltsev DV Disorders of the autism spectrum in children with folate deficiency, 2016). Formulating the purpose of the article. The purpose of medical care is to ensure progress in mental development and eliminate the manifestations of autism in children by providing neuroprotective and neuroregenerative effects of therapeutic interventions. The presentation of the main material. The neuroprotective effect is to eliminate or suppress the mechanisms of CNS damage – mostly immunedependent processes (systemic inflammation, opportunistic and opportunistic infections, antineuronal autoimmunity, etc.). Neuroregeneration is a consequence of activation of metabolism in the CNS due to nootropic drug therapy and stimulation of remyelination during immunoglobulin therapy. Medical care is provided in stages, in stages, according to the modern understanding of the pathogenesis of the disease. The main drug is intravenous human immunoglobulin, which has a complex positive effect on the CNS of children with autism spectrum disorders due to anti- inflammatory, immunomodulatory, antimicrobial and remyelinating effects. During the course of therapy, this drug is combined with antimicrobial, nootropic, hepato- and immunotropic drugs, detoxification and metabolic support in a certain sequence in accordance with the current understanding of the pathogenesis of the disease and the results of paraclinical laboratory studies obtained by follow-up. Conclusions and prospects for further research. When assessing the effectiveness of treatment and determining the need for further therapy according to the protocol, take into account a range of factors, including the dynamics of mental disorders on the scales for assessing the severity of autism spectrum disorders, the dynamics of reduction of myelinated areas on MR images of the brain, changes in bioelectrical activity EEG, restoration of gastrointestinal function according to clinical data and coprogram results, results of laboratory paraclinical tests, including signs of normalization of immune status su, suppression of autoimmunity to neurons and reduction / elimination of abnormal microbial load on the child's body.

References

Мальцев Д. В. Ефективність і безпечність високодозової в/в імуноглобулінотерапії у дітей з розладами спектру аутизму, асоційованими з генетичним дефіцитом фолатного циклу. Лікарська справа. 2017. №8. С. 8–24.

Мальцев Д. В. Ефективність комбінованої імунотерапії Пропесом та Інфламафертином при дефіциті природних кірців та природних кілерних Т-лімфоцитів, асоційованих з генетичним дефіцитом фолатного циклу. Нові досягнення в імунології та алергології: матерали Науково-прпактичної конференції, м. Київ, 15–16 вересня 2017 року. Імунологія та алергологія. 2017. № 1-2. С. 26.

Мальцев Д. В. Оцінка імунного статусу в дітей з розладами спектру аутизму, асоційованими з генетичним дефіцитом фолатного циклу. Лікарська справа. 2018. №1-2. C. 11–23.

Мальцев Д. В. Етапне ведення розладів аутистичного спектру, асоційованих із генетичним дефіцитом фолатного циклу. Міжнародний неврологічний журнал. 2016. №2 (80). С. 151–158.

Мальцев Д. В. Ефективність імунотерапії пр. дефіциті природних кілерів та/або природних кілерних Т-лімфоцитів у людей. Епідеміологія, імунопатогенез, діагностика, лікування хламідіозу і TORCH-інфекцій): матеріали тез доповідей науково-практичної конференції, м. Київ, 23–24 листопада 2016 року. Імунологія та алергологія. Додаток. 2016. № 1. С. 6–7.

Binstock T. Anterior insular cortex: linking intestinal pathology and brain function in autism-spectrum subgroups. Med. Hypotheses. 2001. Vol. 57(6). P. 714–717.

Binstock T. Intra-monocyte pathogens delineate autism subgroups. Med. Hypotheses. 2001. Vol. 56(4). P. 523–531.

Boris M., Goldblatt A., Edelson S.M., Edelson PA-C. Improvement in children with autism treated with intravenous gamma globulin. J. Nutr. Environ. Medicine. 2006. Vol. 15 (4). P. 1.

Bradstreet J., Singh V.K., El-Dahr J. High dose intravenous immunoglobulin improves symptoms in children with autism. The international symposium on autism. Dec. 28, 1999. Atnhem, Netherlands.

Connery K., Tippett M., Delhey L.M. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl. Psychiatry. 2018 Vol. 8(1). P. 148.

DelGiudice-Asch G., Simon L., Schmeidler J. Brief report: a pilot open clinical trial of intravenous immunoglobulin in childhood autism. J. Autism Dev. Disord. 1999. Vol. 29(2). P. 157–160.

Fattorusso A., Di Genova L., Dell'Isola G.B. et al. Autism Spectrum Disorders and the Gut Microbiota. Nutrients. 2019. Vol. 11(3). pii: E521.

Grechanina Y., Bugaeva E., Lisniak S. et al. Successful Rehabilitation of Patient Disabled dy the Autistic Spectrum Disorder and the Modified Epigenetic Status (Polymorphisms DRD2 2137 T/T, MTRR 66 A/G, MTHFR 677 C/T, MTHFR 1298 A/C) – Case Report. Georgian Med. News. 2019. Vol. 290. P. 124–127.

Gupta S. Treatment of children with autism with intravenous immunoglobulin. J. Child. Neurol. 1999. Vol. 14(3). P. 203–205.

Jyonouchi H., Geng L., Streck D.L., Toruner G.A. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. J. Neuroinflammation. 2012. Vol. 9. P. 4.

Marí-Bauset S., Zazpe I,. Mari-Sanchis A. et al.Evidence of the gluten-free and caseinfree diet in autism spectrum disorders: a systematic review. J. Child. Neurol. 2014. Vol. 29(12). P. 1718–1727.

Masi A., Quintana D.S., Glozier N. et al. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol. Psychiatry. 2015. Vol. 20(4). P. 440–446.

Melamed I. R., Heffron M., Testori A., Lipe K. A pilot study of high-dose intravenous immunoglobulin 5% for autism: Impact on autism spectrum and markers of neuroinflammation. Autism Res. 2018. Vol. 11(3). P. 421–433.

Nicolson G. L., Gan R., Nicolson N. L., Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders. J. Neurosci Res. 2007. Vol. 85(5). P. 1143–1148.

Niederhofer H., Staffen W., Mair A. Immunoglobulins as an alternative strategy of psychopharmacological treatment of children with autistic disorder. Neuropsychopharmacology. 2003. Vol. 28(5). P. 1014–1015.

Plioplys A.V. Intravenous immunoglobulin treatment of children with autism. J. Child. Neurol. 1998. Vol. 13(2). P. 79–82.

Pu D., Shen Y., Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 2013. Vol. 6(5). Р. 384–392.

Sadeghiyeh T., Dastgheib S.A., Mirzaee-Khoramabadi K. et al. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian. J. Psychiatr. 2019. Vol. 46. P. 54–61.

Shaik Mohammad N., Sai Shruti P., Bharathi V., Krishna Prasad C. et al.Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr. Genet. 2016. Vol. 26(6). P. 281–286.

Stubbs E.G., Budden S.S., Burger D.R. Transfer factor immunotherapy of an autistic child with congenital cytomegalovirus. J. Autism Dev. Disord. 1980. Vol. 10(4). P. 451–458.

Siscoe K. S., Lohr W.D. L-Methylfolate supplementation in a child with autism and methyltetrahydrofolate reductase, enzyme gene C677TT allele. Psychiatr. Genet. 2017. Vol. 27(3). P. 116–119.

Torrente F., Ashwood P., Day R. et al. Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol. Psychiatry. 2002. Vol. 7(4). P. 375–382.

Published

2021-12-06

How to Cite

МАЛЬЦЕВ, Д. (2021). ALGORITHM FOR PROVIDING MEDICAL CARE TO CHILDREN WITH AUTISM SPECTRUM DISORDERS ASSOCIATED WITH GENETIC DEFICIENCY OF THE FOLATE CYCLE. Modern Medicine, Pharmacy and Psychological Health, (1(4), 173-193. Retrieved from http://journals.maup.com.ua/index.php/psych-health/article/view/70

Issue

Section

Статті