NEW APPROACHES AND GEOINFORMATION MEANS TO SOLVE ECOLOGICAL PROBLEMS OF TECHNOGENICALLY LOADED TERRITORIES
DOI:
https://doi.org/10.32689/maup.it.2021.1.3Keywords:
sustainable development, atmospheric air, geographic information systems, ecological risks, trainingAbstract
In order to fulfill Ukraine’s commitments to the world community on climate change prevention, it is necessary to adhere to the signed documents on the development of renewable energy, modernization of enterprises in the fuel and energy sector, various waste management strategies etc. Therefore, it is important to develop software that allows solving problems of visual analysis of the dynamics of the ecological condition of territorial systems and determining the limits of stability of individual territories. It is also important to improve the skills of specialists, in particular employees of ministries, enterprises and organizations responsible for making decisions to reduce the negative impact on the environment and training future professionals in this area. The aim of the article is to study the peculiarities of the use of software for sustainable development and to outline areas for professional development of specialists responsible for decision making process in energy, environmental and related fields. Scientific novelty. The authors substantiate the structural approach to assessing the ecological condition of technogenic areas and propose new forms of presentation of monitoring data on technogenic loads and risks, reflecting the dynamics of the ecological situation in the time of informative features. In conclusion, the article emphasizes that it is important to implement software tools to support management decisions in the process of professional development in energy, environmental and related fields. This meets modern world requirements for the training of specialists of the new technological era and will contribute to the implementation of the concept of society sustainable development. Having mastered such software, specialists will be able to: identify previously unknown relationships between environmental parameters and impact factors; identify and predict hidden trends and patterns of environmental processes ( including threat factors; systematize and integrate data on the state of the environment; develop optimization recommendations in energy, environmental and related fields; visualize the results of analysis, and to prepare preliminary reports and drafts of management decisions etc.
References
Brundtland G.H., Khalid M., Agnelli S., Al-Athel S., Chidzero B. Our common future. New York, 1987.
Згуровський М.З. Аналіз сталого розвитку: глобальний і регіональний контексти : монографія. К. : НТУУ «КПІ», 2012. 312 c.
Report On Aggregation Indicators for Sustainable Development. New York : UN Division on Sustainable Development, 2001.
Yıldız-Geyhan E., Yılan G., Altun-Çiftçioğlu G.A., Kadırgan M.A.N. Environmental and social life cycle sustainability assessment of different packaging waste collection systems. Resources, Conservation and Recycling. 2019. Vol. 143. P. 119–132.
Niemmanee T., Kaveeta R., Potchanasin C. Assessing the Economic, Social, and Environmental Condition for the Sustainable Agricultural System Planning in Ban Phaeo District, Samut Sakhonn Province, Thailand. Procedia – Social and Behavioral Sciences. 2015. Vol. 197. P. 2554–2560.
Про схвалення Концепції створення загальнодержавної автоматизованої системи «Відкрите довкілля». Розпорядження Кабінету Міністрів України. Концепція від 07.11.2018 № 825-р. https://zakon.rada.gov.ua/laws/show/825-2018-%D1%80.
Zhao L., Zha Y., Zhuang Y., Liang L. Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions. European Journal of Operational Research. 2019. Vol. 275(3). P. 1083–1095.
González-García S., Rama M., Cortés A., et al. Embedding environmental, economic and social indicators in the evaluation of the sustainability of the municipalities of Galicia (northwest of Spain). Journal of Cleaner Production. 2019. Vol. 234. P. 27–42.
Baleta J., Mikulčić H., Klemeš J.J., Urbaniec K., Duić N. Integration of energy, water and environmental systems for a sustainable development. Journal of Cleaner Production. 2019. Vol. 215. P. 1424–1436.
Mikulčić H., Wang X., Duić N., Dewil R. Environmental problems arising from the sustainable development of energy, water and environment system. Journal of Environmental Management. 2020. Vol. 259. 109666.
Reid J., Rout M. Developing sustainability indicators – The need for radical transparency. Ecological Indicators. 2020. Vol. 110. 105941.
Chowdhury T., Chowdhury H., Chowdhury P., Sait S.M., Paul A., Ahamed J. Uddin, Saidur R. A case study to application of exergy-based indicators to address the sustainability of Bangladesh residential sector. Sustainable Energy Technologies and Assessments. 2020. Vol. 37. 100615.
Popov O.O., Іatsyshyn A.V., Kovach V.O. et al. Risk Assessment for the Population of Kyiv, Ukraine as a Result of Atmospheric Air Pollution. Journal of Health and Pollution. 2020. Vol. 10(25). 200303.
Іatsyshyn A.V., Іatsyshyn Anna V., Artemchuk V.O. et al. Software tools for tasks of sustainable development of environmental problems: peculiarities of programming and implementation in the specialists’ preparation. E3S Web of Conferences. 2020. Vol. 166. 01001.
Suo C., Li Y.P., Sun J., Yin S. An air quality index-based multistage type-2-fuzzy interval-stochastic programming model for energy and environmental systems management under multiple uncertainties. Environ. Res. 2018. Vol. 167. P. 98–114.
Rönkkö M., Heikkinen J., Kotovirta V., Chandrasekar V. Automated preprocessing of environmental data. Future Generation Computer Systems. 2015. Vol. 45. P. 13–24.
Vergara A., Rubio M.P., Lorenzo M. On the Design of Virtual Reality Learning Environments in Engineering. Multimodal Technologies and Interactions. 2017. Vol. 1. 11 p.
Grodotzki J., Ortelt T.R., Tekkaya A.E. Remote and Virtual Labs for Engineering Education 4.0. Procedia Manufacturing. 2018. Vol. 26. P. 1349–1360.
Демидович Б.П. Лекции по математической теории устойчивости. Москва : Изд. «Наука», 1967. 472 с.
Щомісячний бюлетень забруднення атмосферного повітря в Києві та містах Київської області. К. : Центральна геофізична обсерваторія імені Бориса Срезневського, 2005–2018 рр.
Алымов В.Т., Тарасова Н.П. Техногенный риск: Анализ и оценка: Учебное пособие для вузов. М. : ИКЦ «Академкнига», 2004. 118 с.