АСОЦІАЦІЯ ГЕНЕТИЧНОГО ДЕФІЦИТУ ФОЛАТНОГО ЦИКЛУ І РОЗЛАДІВ СПЕКТРУ АУТИЗМУ У ДІТЕЙ: ІМУНОЗАЛЕЖНІ МЕХАНІЗМИ ЦЕРЕБРАЛЬНОГО ПОШКОДЖЕННЯ І МОЖЛИВОСТІ ІМУНОТЕРАПЕВТИЧНИХ ВТРУЧАНЬ (ОГЛЯД ЛІТЕРАТУРИ)
DOI:
https://doi.org/10.32689/2663-0672-2021-1-5Ключові слова:
гомоцистеїн, опортуністичні інфекції, антимозковий автоімунітет, інтрацеребральне запалення, імунотерапія, імуномодуляціяАнотація
Анотація. Постановка проблеми. Розлади аутистичного спектру (РАС) – це група гетерогенних нейропсихіатричних порушень, які є варіабельними за фенотипом і клінічно характеризуються дефіцитом соціальних взаємодій, порушенням комунікації та стереотипною поведінкою. Одним із важливих досягнень в психіатрії останніх років є з’ясування асоціації генетичного дефіциту фолатного циклу (ГДФЦ) і РАС у дітей, на що вказують результати 5 мета-аналізів рандомізованих контрольованих клінічних досліджень. Формулювання мети дослідження. В даному науковому огляді розглянута доказова база асоціації ГДФЦ з РАС у дітей, а також – результати досліджень щодо особливостей біохімічного профілю, оксидативного стресу, імунної дисфункції, імунозалежних механізмів ураження ЦНС, включаючи опортуністичні та умовно патогенні інфекції, автоімунні реакції, алергію, імунозапальний синдром та схильність до онкологічних уражень. Матеріали та методи дослідження. Методологічною основою роботи є цілісне розуміння людини як біопсихосоціальної істоти, єдності психічного та соматичного. Було використано аналітичний та порівняльний методи дослідження. Виклад основного матеріалу. Проаналізовано 27 відповідних випробувань, з них – 4 проспективних контрольованих (одне подвійне сліпе плацебо контрольоване), 6 – проспективних неконтрольованих, 2 ретроспективних контрольованих і 15 ретроспективних неконтрольованих). Загальний клінічний результат апробації препаратів нормального в/в імуноглобуліну людини за даними цього мета-аналізу полягає у покращанні з боку спілкування, гіперзбудливості, гіперактивності, пізнання, уваги, соціальної взаємодії, зорового контакту, ехолалії, мовлення, реакції на команди, сонливості, зниженої активності, а в деяких випадках – і в повному усуненні симптомів РАС. Висновки та перспективи подальших досліджень. Наведені дані щодо успіхів апробації специфічної дієти, суплементації, імуномодулюючих та протизапальних терапевтичних стратегій у дітей з РАС та намічені найперспективніші напрямки подальших клінічних досліджень. Є підстави вважати, що успішна апробація таких лікувальних стратегій в майбутньому дозволить зробити прорив у лікуванні РАС, асоційованих з ГДФЦ, у дітей, що забезпечить не тільки видужання від важкого і наразі некурабельного нейропсихіатричного розладу, однак і сприятиме зупинці масштабної загрозливої епідемії аутизму у всьому світі.
Посилання
Al-Mosalem O.A., El-Ansary A., Attas O., Al-Ayadhi L. Metabolic biomarkers related to energy metabolism in Saudi autistic children Clin. Biochem., 2009. Vol. 42 Issue10-11, рр. 949-957.
Arab A.H., Elhawary N.A. Methylenetetrahydrofolate Reductase Gene Variants Confer Potential Vulnerability to Autism Spectrum Disorder in a Saudi Community. Neuropsychiatr. Dis. Treat. 2019. Vol. 15, рр. 3569-3581.
Belardo A., Gevi F., Zolla L. et al. The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. J. Nutr. Biochem. 2019. Vol. 70, рр. 38-46.
Bhatia P., Singh N. Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam. Clin. Pharmacol. 2015. Vol. 29 Issue 6, рр. 522–528.
Binstock T. Intra-monocyte pathogens delineate autism subgroups. Med. Hypotheses 2001. Vol. 56 Issue 4. рр. 523–531.
Cabanlit M., Wills S., Goines P. et al. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann. N. Y. Acad. Sci. 2007. Vol. 107, рр. 92-103.
Chen F., Wen T., Lv Q., Liu F. Associations between Folate Metabolism Enzyme Polymorphisms and Lung Cancer: A Meta-Analysis. Nutr. Cancer. 2020. Vol. 72 Issue 7, рр. 1211-1218.
Chen L., Shi X.J., Liu H. et al. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry. 2021. Vol. 11 Issue 1. р. 15.
DeLong G.R., Bean S.C., Brown F.R. 3rd. Acquired reversible autistic syndrome in acute encephalopathic illness in children. Arch. Neurol. 1981. Vol. 38 Issue 3. рр. 191–194.
El-Ansary A., Hassan Wail M., Daghestani M. et al. Preliminary evaluation of a novel nine-biomarker profile for the prediction of autism spectrum disorder. PLoS One. 2020. Vol. 15 Issue 1. р. e0227626.
Forés-Martos J., Catalá-López F., Sánchez-Valle J. et al. Transcriptomic metaanalyses of autistic brains reveals shared gene expression and biological pathway abnormalities with cancer. Mol. Autism. 2019. Vol. 10. р. 17.
Frustaci A., Neri M., Cesario A. et al. Oxidative stress-related biomarkers in autism: systematic review and metaanalyses. Free Radic. Biol. Med. 2012. Vol. 52. Issue 10. рр. 2128–2141.
Frye R.E. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav. 2015. Vol. 47. рр. 147-157.
Frye R.E., Sequeira J.M., Quadros E.V. et al. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry. 2013. Vol. 18 Issue 3. рр. 369–381.
Gevi F., Belardo A., Zolla L. A metabolomics approach to investigate urine levels of neurotransmitters and related metabolites in autistic children. Biochim. Biophys. Acta Mol. Basis. Dis. 2020. Vol. 1866 Issue 10. р. 165859.
Ghaziuddin M., Tsai L.Y., Eilers L., Ghaziuddin N. Brief report: autism and herpes simplex encephalitis. J. Autism. Dev. Disord. 1992. Vol. 22 Issue 1. рр. 107–113.
Gillberg I.C. Autistic syndrome with onset at age 31 years: herpes encephalitis as a possible model for childhood autism. Dev. Med. Child. Neurol. 1991. Vol. 33 Issue 10. рр. 920-924.
González-Toro M.C., Jadraque-Rodríguez R., Sempere-Pérez Á. et al. Anti-NMDA receptor encephalitis: two paediatric cases. Rev. Neurol. 2013. Vol. 57. Issue 11. рр. 504-508.
Guo B.Q., Li H.B., Ding S.B. et al. Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta-analysis. Psychiatry Res. 2020. Vol. 291. рр. 113–283.
Haghiri R., Mashayekhi F., Bidabadi E., Salehi Z. Analysis of methionine synthase (rs1805087) gene polymorphism in autism patients in Northern Iran. Acta Neurobiol. Exp. (Wars). 2016. Vol. 76 Issue 4, рр. 318–323.
Hughes H.K., Ashwood P. Anti-Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders. Front. Psychiatry. 2018. Vol. 26 Issue 9. р. 627.
Hughes H.K., Ko E.M., Rose D., Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci. 2018. Vol. 12, р. 405.
Jyonouchi H., Geng L., Streck D.L., Toruner G.A. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. J. Neuroinflammation. 2012. Vol. 9, р. 4.
Keirns C.C. Child Developmental Delays and Disorders: Autism Spectrum Disorder. FP Essent. 2021. Vol. 510. pp. 28–34.
Kiani R., Lawden M., Eames P. et al. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism. BJ Psych. Bull. 2015. Vol. 39. Issue 1. рр. 32–35.
Kuhn M., Grave S., Bransfield R., Harris S. Long term antibiotic therapy may be an effective treatment for children comorbid with Lyme disease and autism spectrum disorder. Med Hypotheses. 2012. Vol. 78 Issue 5. рр. 606–615.
Li B., Xu Y., Zhang X. et al. The effect of vitamin D supplementation in treatment of children with autism spectrum disorder: a systematic review and meta-analysis of randomized controlled trials. Nutr. Neurosci. 2020. Vol. 7. рр. 1–11.
Li Y., Qiu S., Shi J. et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr. 2020. Vol. 20 Issue 1. р. 449.
Li Y.J., Li Y.M., Xiang D.X. et al. Supplement intervention associated with nutritional deficiencies in autism spectrum disorders: a systematic review. Eur. J. Nutr. 2018. Vol. 57 Issue 7. рр. 2571-2582.
Li Ye., Viscidi R.P., Kannan G. et al. Chronic Toxoplasma gondii Infection Induces Anti-N-Methyl-d-Aspartate Receptor Autoantibodies and Associated Behavioral Changes and Neuropathology. Infect. Immun. 2018. Vol. 86 Issue 10, р. e00398-18.
Lv M.N., Zhang H., Shu Y. et al. The neonatal levels of TSB, NSE and CK-BB in autism spectrum disorder from Southern China. Transl. Neurosci. 2016. Vol. 7 Issue 1. рр. 6-11.
Marchezan J., Winkler Dos Santos E.A., Deckmann I., Dos Santos Riesgo R. Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy. Neuroimmunomodulation 2018. Vol. 25 Issue 5-6, рр. 300-319.
Marí-Bauset S., Zazpe I,. Mari-Sanchis A. et al. Evidence of the gluten-free and casein-free diet in autism spectrum disorders: a systematic review. J. Child. Neurol. 2014. Vol. 29 Issue 12. рр. 1718–1727.
Masi A., Quintana D.S., Glozier N. et al. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol. Psychiatry. 2015. Vol. 20 Issue 4, рр. 440-446.
Mead J., Ashwood P. (2015). Evidence supporting an altered immune response in ASD. Immunol. Lett. 2015. Vol. 163 Issue 1. рр. 49–55.
Melamed I.R., Heffron M., Testori A, Lipe K. A pilot study of high-dose intravenous immunoglobulin 5% for autism: Impact on autism spectrum and markers of neuroinflammation. Autism Res. 2018. Vol. 11 Issue 3. рр. 421–433.
Mohammad N.S., Shruti P.S., Bharathi V. et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr. Genet. 2016. Vol. 26 Issue 6. рр. 281-286.
Molina-López J., Leiva-García B., Planells E., Planells P. Food selectivity, nutritional inadequacies, and mealtime behavioral problems in children with autism spectrum disorder compared to neurotypical children. Int. J. Eat Disord. 2021. Oct 27. Online ahead of print.
Nayeri T., Sarvi S., Moosazadeh M. et al. Relationship between toxoplasmosis and autism: A systematic review and meta-analysis. Microb. Pathog. 2020. Vol. 147, р. 104434.
Nicolson G.L., Gan R., Nicolson N.L., Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders. J. Neurosci Res. 2007. Vol. 85 Issue 5. рр. 1143-1148.
Noriega D.B., Savelkoul H.F. Immune dysregulation in autism spectrum disorder. Eur. J. Pediatr. 2014. Vol. 173 Issue 1. рр. 33-43.
Pu D., Shen Y., Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 2013. Vol. 6 Issue 5. рр. 384-392.
Puangpetch A., Suwannarat P., Chamnanphol M. et al. Significant Association of HLA-B Alleles and Genotypes in Thai Children with Autism Spectrum Disorders: A Case-Control Study. Dis. Markers. 2015. Vol. 2015, р. 724935.
Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab. Brain Dis. 2016. Vol. 31 Issue 4, рр. 727-735.
Rai V. Strong Association of C677T Polymorphism of Methylenetetrahydrofolate Reductase Gene With Nosyndromic Cleft Lip/Palate (nsCL/P). Indian. J. Clin. Biochem. 2018. Vol. 33 Issue 1, рр. 5-15.
Reinert P., Moulias R., Goust J.M. Demonstration of cellular immunity deficiency limited to measles virus in 20 cases of subacute sclerosing leukoencephalitis. Arch. Fr. Pediatr. 1972. Vol. 29 Issue 6. рр. 655-665.
Rossignol D.A., Frye R.E. A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. J. Pers. Med. 2021. Vol. 11 Issue 6, рр. 488.
Rout U.K., Mungan N.K., Dhossche D.M. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. Eur. Child. Adolesc. Psychiatry. 2012. Vol. 21 Issue 3. рр. 141-147.
Russo A.J., Krigsman A., Jepson B., Wakefield A. Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology. 2009. Vol. 2. рр. 85–94.
Sadeghiyeh T., Dastgheib S.A., Mirzaee-Khoramabadi K. et al. Association of MTHFR 677C>T and 1298A>Cpolymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian J Psychiatr. 2019. Vol. 46, рр. 54–61.
Saghazadeh A., Ataeinia B., Keynejad K. et al. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. J. Psychiatr. Res. 2019. Vol. 115, рр. 90-102.
Sakamoto A., Moriuchi H., Matsuzaki J. et al. (2015). Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain. Dev. 2015. Vol. 37 Issue 2, рр. 200-205.
Santaella M.L., Varela Y., Linares N., Disdier O.M. Prevalence of autism spectrum disorders in relatives of patients with selective immunoglobulin A deficiency. P. R. Health. Sci J. 2008. Vol. 27 Issue 3, рр. 204-208.
Singh V.K., Warren R.P., Odell J.D. et al. Antibodies to myelin basic protein in children with autistic behavior. Brain. Behav. Immun. 1993. Vol. 7 Issue 1, рр. 97-103.
Valayi S., Eftekharian M.M., Taheri M., Alikhani M.Y. (2017). Evaluation of antibodies to cytomegalovirus and Epstein-Barr virus in patients with autism spectrum disorder. Hum. Antibodies, Vol. 26 Issue 3, рр. 165-169.
Venâncio P., Brito M. J., Pereira G., Vieira J. P. Anti-N-methyl-D-aspartate receptor encephalitis with positive serum antithyroid antibodies, IgM antibodies against mycoplasma pneumoniae and human herpesvirus 7 PCR in the CSF. Pediatr. Infect. Dis. J. 2014. Vol. 33 Issue 8. рр. 882–883.
Wan L., Li Y., Zhang Z., Sun Z. et al. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl. Psychiatry. 2018. Vol. 8 Issue 1, рр. 242.
Wang Z., Ding R., Wang J. et al. The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta-Analysis. Nutrients. 2020. Vol. 13 Issue 1, р. E86.
Warren R.P., Odell J.D., Warren W.L. et al. Brief report: immunoglobulin A deficiency in a subset of autistic subjects. J. Autism. Dev. Disord. 1997. Vol. 27 Issue 2, рр. 187-192.
Wasilewska J., Kaczmarski M., Stasiak-Barmuta A. et al. Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old. Arch. Med. Sci. 2012.Vol. 8 Issue 2, рр. 324-331.
Xu G., Snetselaar L.G., Jing J. et al. Association of Food Allergy and Other Allergic Conditions With Autism Spectrum Disorder in Children. Allergy Asthma Clin Immunol. 2019. Vol. 15, р. 84.
Yektaş Ç., Alpay M., Tufan A.E. et al. Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatr. Dis. Treat. 2019. Vol. 15, рр. 2213-2219.