INFLUENCE OF NUTRITIONAL STATUS ON THE RISK OF DEVELOPING METABOLIC SYNDROME IN OBESE PATIENTS

Authors

DOI:

https://doi.org/10.32689/2663-0672-2025-1-5

Keywords:

metabolic syndrome, obesity, nutritional status, insulin resistance, type 2 diabetes mellitus, cardiovascular diseases

Abstract

Today, the problem of obesity is relevant on a global scale due to the associated metabolic and cardiovascular complications that lead to the development of metabolic syndrome. The metabolic syndrome (MS) is a combination of metabolic risk factors characterised by abdominal obesity, dyslipidaemia, low high-density lipoprotein cholesterol, hypertension and insulin resistance, which leads to the development of metabolic disorders such as type 2 diabetes mellitus, chronic kidney disease, and non-alcoholic fatty liver disease, which are the main causes of vascular damage. Lifestyle changes, especially in eating habits, are the main therapeutic strategy for treating and preventing metabolic syndrome. This study provides practical ideas for improving treatment in collaboration between clinicians, dietitians, and obese MS patients. Objective. To analyse the relationship between nutritional status and the development of MS in obese people. Materials and methods. The study searched and analysed relevant scientific information sources on risk factors for metabolic syndrome and possibilities for its prevention in obese people. The bibliosemantic method, methods of comparative analysis, systematisation and generalisation of information, and structural and logical analysis were used in the study. Results and discussion. The main source of MetS is insulin resistance, which plays a central role in the onset, progression and transition of MetS to other metabolic disorders. Individuals who are prone to increased carbohydrate intake, which contributes to high blood pressure, triglycerides and low-density lipoprotein cholesterol, are at high risk of developing metabolic syndrome. Consumption of foods with a low glycaemic index and high fibre content helps to reduce insulinemia and insulin resistance. A lowfat diet benefits the management of systolic and diastolic blood pressure and improves lipid profile, but only in the short term. Consumption of large amounts of saturated fat and trans fatty acids is associated with a negative impact on insulin action. In contrast, consumption of monounsaturated and polyunsaturated fats has the opposite effect. Essential monounsaturated fatty acids and small amounts of polyunsaturated fatty acids support normal cholesterol levels and cardiovascular health. A highprotein diet is effective in treating obesity, as well as MetS and glycaemic control. Conclusions. Modern diets and nutrition models have different effects on each risk factor for MS. However, all of them should be compatible with calorie restriction, which is most effective in metabolic disorders. Proper dietary recommendations with controlled energy intake can influence and prevent the development of MS in obese patients.

References

Лісун Ю., Яловицька О. Оцінка нутритивного статусу пацієнтів з надлишковою масою тіла та ожирінням лікарем анастезіологом-інтенсивістом. Pain, anaesthesia and intensive care. 2022. Вип. 3(100). С. 30–35. https://doi.org/10.25284/2519-2078.3(100).2022.267764

Ambroselli D., Masciulli F., Romano E., Catanzaro G., Besharat Z.M., Massari M.C., Ferretti E., Migliaccio S., Izzo L., Ritieni A. et al. New advances in metabolic syndrome, from prevention to treatment: the role of diet and food. Nutrients. 2023. Vol. 15. P. 640. https://doi.org/10.3390/nu15030640

Asahara S. I., Miura H., Ogawa W., Tamori Y. Sex difference in the association of obesity with personal or social background among urban residents in Japan. PLoS ONE. 2020. Vol. 15. P. e0242105. https://doi.org/10.1371/journal.pone.0242105

Balakrishna Y., Manda S., Mwambi H., van Graan A. Identifying nutrient patterns in south african foods to support national nutrition guidelines and policies. Nutrients. 2021. Vol. 13. P. 3194. https://doi.org/10.3390/nu13093194

Castro-Barquero S., Ruiz-León A.M., Sierra-Pérez M., Estruch R., Casas R. Dietary strategies for metabolic syndrome: a comprehensive review. Nutrients. 2020. Vol. 12(10). P. 2983. https://doi.org/10.3390/nu12102983

Chait A., den Hartigh L. J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Frontiers in Cardiovascular Medicine. 2020. Vol. 7. P. 22. https://doi.org/10.3389/fcvm.2020.00022

Cruz I. R., Mourão D. M., Freitas D. A., Souza A. G., Pereira A. R., Aidar F. J., Carneiro A. L. Nutritional status associated with metabolic syndrome in middle-school children in the city of montes claros – MG, Brazil. Journal of Human Kinetics. 2014 Vol. 43. P.97–104. https://doi.org/10.2478/hukin-2014-0094

Dash I., Sampson U., Sahu P. K., Kumar S., Panda J. Nutritional status associated with metabolic syndrome. International Journal of Health Sciences. 2022. Vol. 6(S5). P. 2364–2372. https://doi.org/10.53730/ijhs.v6nS5.9148

Dekhtiar Y. М., Kostyev F. I., Zalyva K. A. Features treatment of idiopathic overactive bladder without detrusor overactivity. Likarska sprava. 2019. No. 7-8. P. 35–40. URL: https://doi.org/10.31640/jvd.7-8.2019(5) (date of access: 02.04.2025).

Guasch-Ferré M., Satija A., Blondin S.A., Janiszewski M., Emlen E., O’Connor L.E., Campbell W.W., Hu F.B., Willet W.C., Stampfer M.J. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation. 2019. Vol. 139. P.1828–1845. https://doi.org/10.1161/CIRCULATIONAHA.118.035225

Hegedűs C., MuresanM., Badale A., Bombicz M., Varga B., Szilágyi A., Sinka D., Bácskay I., Popoviciu M., Magyar I. et al. SIRT1 activation by equisetum arvense L. (Horsetail) modulates insulin sensitivity in Streptozotocin induced diabetic rats. Molecules. 2020. Vol. 25. P.2541. https://doi.org/10.3390/molecules25112541

Hemler E.C., Hu F.B. Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Current Atherosclerosis Reports. 2019. Vol. 21. P. 18. https://doi.org/10.1007/s11883-019-0779-5

Hoyas I, Leon-Sanz M. Nutritional challenges in metabolic syndrome. Journal of Clinical Medicine. 2019. Vol. 8(9). P. 1301. https://doi.org/10.3390/jcm8091301

World Health Organization. Obesity and overweight. URL: https://www.who.int/news-room/fact-sheets/detail/obesity-andoverweight

Huang X., Hu L., Li, J. et al. The association of nutritional and inflammatory status with cardiovascular and all-cause mortality risk among US patients with metabolic syndrome. Scientific Reports. 2025. Vol. 9589. https://doi.org/10.1038/s41598-025-94061-7

Jovanovski E., Khayyat R., Zurbau A., Komishon A., Mazhar N., Sievenpiper J. L., Mejia S. B., Ho H.V.T., Li D., Jenkins A. L., et al. Should viscous fiber supplements be considered in diabetes control? Results from a systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2019. Vol. 42. P. 755–766. https://doi.org/10.2337/dc18-1126

Kahleova H., Salas-Salvadó J., Rahelić D., Kendall C. W., Rembert E., Sievenpiper J. L. Dietary patterns and cardiometabolic outcomes in diabetes: a summary of systematic reviews and meta-analyses. Nutrients. 2019. Vol. 11. P. 2209. https://doi.org/10.3390/nu11092209

Konieczna J., Romaguera D., Pereira V., Fiol M., Razquin C., Estruch R., Asensio E. M., Babio N., Fitó M., Gómez-Gracia E., et al. Longitudinal association of changes in diet with changes in body weight and waist circumference in subjects at high cardiovascular risk: The PREDIMED trial. The International Journal of Behavioral Nutrition and Physical Activity. 2019. Vol. 16. P. 139. https://doi.org/10.1186/s12966-019-0893-3

Liu Y. S., Wu Q. J., Xia Y., Zhang J. Y., Jiang Y. T., Chang Q., Zhao Y. H. Carbohydrate intake and risk of metabolic syndrome: A dose-response meta-analysis of observational studies. Nutrition, Metabolism & Cardiovascular Diseases. 2019. Vol. 29. P. 1288–1298. https://doi.org/10.1016/j.numecd.2019.09.003

Liu J., Lu W., Lv Q., Wang Y., Xu X., He Y., Chang H., Zhao Y., Zhang X., Zang X., Zhang H. Impact of dietary patterns on metabolic syndrome in young adults: a cross-sectional study. Nutrients. 2024. Vol. 16(17). P. 2890. https://doi.org/10.3390/nu16172890

Monserrat-Mesquida M., Quetglas-Llabrés M., Capó X., Bouzas C., Mateos D., Pons A., Tur J.A., Sureda A. Metabolic syndrome is sssociated with oxidative stress and proinflammatory state. Antioxidants. 2020. Vol. 9. P. 236. https://doi.org/10.3390/antiox9030236

Putri M. M., Nurhalimah A. S., Anindya I. D., Rifaldi M. S., Azzahra S. T., Fitrianingsih A.D.R. The relationship of nutritional status with the incidence of metabolic syndrome in security and order employees in universitas Pendidikan Indonesia. Journal of Applied Food and Nutrition. 2024. Vol. 5(1). P. 10–16. https://doi.org/10.17509/jafn.v5i1.70001

Osadnik K, Osadnik T, Lonnie M, et al. Metabolically healthy obese and metabolic syndrome of the lean: the importance of diet quality. Analysis of MAGNETIC cohort. Nutrition Journal. 2020. Vol. 19. P. 19. https://doi.org/10.1186/s12937-020-00532-0

Pelczynska M., Mikulska A. A., Czyzewska K., Bogdanski P., Grzelak T. The Association of serum circulating neuropeptide Q and chemerin levels with cardiometabolic risk factors among patients with metabolic syndrome. Biomolecules. 2021. Vol. 11. https://doi.org/10.3390/biom11121863

Quarta A., Quarta M. T., Mastromauro C., Chiarelli F., Giannini C. Influence of nutrition on growth and development of metabolic syndrome in children. Nutrients. 2024 Vol. 16(22). P. 3801. https://doi.org/10.3390/nu16223801

Ramezani-Jolfaie N., Mohammadi M., Salehi-Abargouei A. The effect of healthy Nordic diet on cardio-metabolic markers: A systematic review and meta-analysis of randomized controlled clinical trials. European Journal of Nutrition. 2019. Vol. 58. P. 2159–2174. https://doi.org/10.1007/s00394-018-1804-0

Rhee E.J. The influence of obesity and metabolic health on vascular health. Endocrinology and Metabolism. 2022. Vol. 37(1). P. 1–8. https://doi.org/10.3803/EnM.2022.101

Ruscica M., Corsini A., Ferri N., Banach M. & Sirtori C. R. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacological Research. 2020. Vol. 159. P. 104916. https://doi.org/10.1016/j.phrs.2020.104916

Samson R., Ennezat P.V., Le Jemtel T.H., Oparil S. Cardiovascular disease risk reduction and body mass index. Current Hypertension Reports. 2022. Vol. 24(11). P. 535–546. https://doi.org/10.1007/s11906-022-01213-5

Sanyaolu A., Okorie C., Qi X., Locke J., Rehman S. Childhood and adolescent obesity in the United States: A public health concern. Global Pediatric Health. 2019. Vol. 6. 10.1177/2333794X19891305

Schwingshackl L., Chaimani A., Schwedhelm C., Toledo E., Pünsch M., Hoffmann G., Boeing H. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: A systematic review and network meta-analysis. Critical Reviews in Food Science and Nutrition. 2019. Vol. 59. P. 2674–2687. https://doi.org/10.1080/10408398.2018.1463967

Seo E. H., Kim H., Kwon O. Association between total sugar intake and metabolic syndrome in middle-aged korean men and women. Nutrients. 2019. Vol.11. P. 2042. https://doi.org/10.3390/nu11092042

Singh R., Rathore S. S., Khan H., Karale S., Chawla Y., Iqbal K., Bhurwal A., Tekin A., Jain N., Mehra I. Anand S., Reddy S., Sharma N., Sidhu G. S., Panagopoulos A., Pattan V., Kashyap R., Bansal V. Association of obesity with COVID-19 severity and mortality: An updated systemic review, meta-analysis, and meta-regression. Frontiers in Endocrinology. 2022. Vol. 13. P. 780872. https://doi.org/10.3389/fendo.2022.780872

Sluik D., Brouwer-Brolsma E. M., Berendsen A.A.M., Mikkilä V., Poppitt S. D., Silvestre M. P., Tremblay A., Pérusse L., Bouchard C., Raben A., et al. Protein intake and the incidence of pre-diabetes and diabetes in 4 population-based studies: The PREVIEW project. The American Journal of Clinical Nutrition. 2019. Vol. 109. P. 1310–1318. https://doi.org/10.1093/ajcn/nqy388

Spearman C. W., Afihene M., Betiku O., Bobat B., Cunha L., Kassianides C., Katsidzira L., Mekonnen H. D., Ocama P., Ojo O., Paruk I., Tzeuton C., Sonderup M. W. Epidemiology, risk factors, social determinants of health, and current management for non-alcoholic fatty liver disease in sub-Saharan Africa. The Lancet Gastroenterology and Hepatology. 2021. Vol. 6. P. 1036–1046. https://doi.org/10.1016/S2468-1253(21)00275-2

Stepanov Y., Titova M., Stoikevich M. Nutritional status of patients with chronic inflammatory bowel diseases and methods of its assessment. Gastroenterology. 2021. Vol. 53(4). P. 273–281. https://doi.org/10.22141/2308-2097.53.4.2019.182407

Tal B., Sack J., Yaron M., Shefer G., Buch A., Ben Haim L., Marcus Y., Shenkerman G., Sofer Y., Shefer L., Margaliot M., Stern N. Increment in dietary potassium predicts weight loss in the treatment of the metabolic syndrome. Nutrients. 2019. Vol. 11. P. 1256. https://doi.org/10.3390/nu11061256

Ushula T.W., Mamun A., Darssan D., Wang W.Y.S., Williams G. M., Whiting S. J., Najman J. M. Dietary patterns and the risks of metabolic syndrome and insulin resistance among young adults: Evidence from a longitudinal study. Clinical Nutrition. 2022. Vol. 41. P. 1523–1531. https://doi.org/10.1016/j.clnu.2022.05.006

Vasamsetti S. B., Natarajan N., Sadaf S., Florentin J., Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. Journal of Physiology. 2022. Vol. 601(11). P. 2099–2120. https://doi.org/10.1113/JP282728

Yang M., Liu S., Zhang C. The related metabolic diseases and treatments of obesity. Healthcare. 2022. Vol. 10. P. 1616. https://doi.org/10.3390/healthcare10091616

Zhang C., Liu S., Yang M. Hepatocellular carcinoma and obesity, type 2 diabetes mellitus, cardiovascular disease: causing factors, molecular links, and treatment options. Frontiers in Endocrinology. 2021. Vol. 12. P. 808526. https://doi.org/10.3389/fendo.2021.808526

Zocchi M., Della Porta M., Lombardoni F., Scrimieri R., Zuccotti G. V., Maier J. A., Cazzola R. A Potential interplay between HDLs and adiponectin in promoting endothelial dysfunction in obesity. Biomedicines. 2022. Vol. 10. P.1344. https://doi.org/10.3390/biomedicines10061344

Downloads

Published

2025-05-28

How to Cite

Корильчук, Н. (2025). INFLUENCE OF NUTRITIONAL STATUS ON THE RISK OF DEVELOPING METABOLIC SYNDROME IN OBESE PATIENTS. Modern Medicine, Pharmacy and Psychological Health, (1(19), 30-37. https://doi.org/10.32689/2663-0672-2025-1-5