MODERN METHODS OF DIGITAL IMAGE WATERMARKING: CLASSIFICATION, ANALYSIS AND DEVELOPMENT TRENDS
DOI:
https://doi.org/10.32689/maup.it.2025.2.13Keywords:
digital watermarking, copyright protection, attack robustness, hybrid methods, deep learning, blind watermarking, digital imagesAbstract
This article presents a comprehensive review of contemporary digital image watermarking methods used to ensure copyright protection, verify authenticity, and trace the sources of digital content distribution.The purpose of the study is to systematize approaches to digital image watermarking, including traditional, hybrid, and deep learning-based methods, and to identify their technical characteristics, strengths and weaknesses, practical efficiency, and scientific and technological challenges in the context of digital security.The methodology is based on a systematic analysis of current scientific sources, including peer-reviewed publications, review articles, experimental studies, and applied implementations of digital watermarking algorithms. The classification of methods was conducted using a set of key technical and functional criteria, including: robustness against attacks, watermark transparency, implementation complexity, computational efficiency, the possibility of blind detection, adaptability to image types, and the breadth of application areas. The comparative analysis focused on assessing the balance between these characteristics, which enables the identification of optimal approaches for practical application in conditions of increasing demands for digital security, privacy, and intellectual property protection.The scientific novelty of the study lies in the integrated generalization of the evolution of watermarking methods, with a particular focus on current technological trends. These include the integration of deep learning to increase the autonomy of algorithms; combining watermarking with cryptographic and blockchain technologies; and the development of adaptive solutions capable of scaling across different image formats and application scenarios.Conclusions. Digital watermarking remains a strategically important tool for protecting digital content. The analyzed methods demonstrate a wide range of solutions with varying degrees of transparency, robustness against attacks, and computational performance. Traditional approaches, based on spatial or frequency domain processing, are well-studied but have limited adaptability. Hybrid methods combine the advantages of classical techniques but require further optimization to withstand sophisticated attacks. Deep learning-based methodologies offer a new level of functionality, including blind watermarking (embedding and extraction without access to the original image), yet face challenges such as high computational costs and the lack of standardized evaluation protocols. In the context of the ongoing digital transformation of society, it is crucial to develop reliable, scalable, and legally regulated watermarking systems capable of functioning effectively under growing requirements for security, privacy, and interoperability across digital platforms.
References
Гавриленко В. О. Дослідження методів побудови цифрових водяних знаків для захисту зображень. 2016. URL: https://dglib.nubip.edu.ua/handle/123456789/1868.
Лозинський С. С. Формування цифрового водяного знаку для захисту авторських прав на графічні об’єкти. Наукові праці НУХТ, 2020. URL: https://openarchive.nure.ua/handle/document/30248.
Сімонов С. О., Іванов С. М., Романенко О. В. Побудова цифрового водяного знака з використанням хаотичних перетворень. Східно-Європейський журнал передових технологій. 2021. № 6/9 (114), с. 6–16. DOI: 10.15587/1729-4061.2021.246641.
Чекан І. І., Піскорський В. В. Метод вбудовування водяного знака у зображення на основі логістичного хаотичного відображення. Інформація і керування. 2021. № 3, с. 121–127. DOI: 10.20998/2522-9052.2021.3.15.
A. F. Eldaoushy et al. Efficient Hybrid Digital Image Watermarking. Journal of Optics, 2023. DOI: 10.1007/s12596-023-01144-7.
Al-Dabbas H. M., Azeez R. A., Ali A. E. Digital Watermarking, Methodology, Techniques, and Attacks: A Review. Iraqi Journal of Science. 2023. Vol. 64, No. 8, pp. 4146–4160. DOI: 10.24996/ijs.2023.64.8.37.
Al-khafaji H., Al-Himyari B. A., Hussain N. F. Techniques for Digital Watermarking in Images: A Review. Journal of University of Babylon for Pure and Applied Sciences. 2024. DOI: 10.29196/ycdrt588.
Ben Jabra, S., Ben Farah, M. Deep Learning-Based Watermarking Techniques Challenges: A Review of Current and Future Trends. Circuits, Systems, and Signal Processing. 2024. 43, 4339–4368. DOI: 10.1007/s00034-024-02651-z.
Gaur S., Barthwal V. An Extensive Analysis of Digital Image Watermarking Techniques International. Journal of Intelligent Systems and Applications in Engineering. 2024. 12(1), 121–145. DOI: 10.31201/ijisae.2024.12145.
Mareen H., Antchougov L., Delvaux J., et al. Blind Deep-Learning-Based Image Watermarking Robust Against Geometric Transformations. arXiv preprint, 2024. 12 с. URL: https://arxiv.org/abs/2402.09062.
Padhi S. K., Ali S. S. DLOVE: A New Security Evaluation Tool for Deep Learning Based Watermarking TechniquesarXiv preprint, 2024. DOI: 10.48550/arXiv.2407.06552.
Rani S., Kaur P. Optimized and Secure Digital Image Watermarking Technique Using Henon Mapping in Redundant Domain. Multimedia Tools and Applications. 2024. 83, 81151–81166. DOI: 10.1007/s11042-024-18643-9.
Wadhera S., Kamra D., Bedi P., et al. A Comprehensive Review on Digital Image Watermarking. arXiv preprint, 2022. URL: https://arxiv.org/abs/2207.06909.
Wang X., Zhang Y., Li H., et al. A Brief, In-Depth Survey of Deep Learning-Based Image Watermarking. Applied Sciences, 2023, 13(21), 11852. DOI: 10.3390/app132111852.
Wang Z., Byrnes O., Bansal R., et al. Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography. arXiv preprint, 2021. URL: https://arxiv.org/abs/2107.09287.
Xie Y., Wang Y., Ma M. Design of a Hybrid Digital Watermarking Algorithm with High Robustness. Journal of Web Engineering. 2023. DOI: 10.13052/jwe1540-9589.19567.
Zhang J., Yu J., Ma J., Wang Y., Jiang H., Wu Z. A Robust Image Watermarking Method Based on Deep Neural Networks. arXiv preprint, 2020. 10 с. URL: https://arxiv.org/abs/2007.02460.
Zhao, L., Gui, X., Shao, Y., Dai, H. Survey on Multipurpose Digital Image Watermarking. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(2), 195–222. DOI: 10.3724/SP.J.1089.2024.20078.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Євген ЛАНСЬКИХ, Олексій НАУМОВ

This work is licensed under a Creative Commons Attribution 4.0 International License.