ENHANCING REAL-TIME DATA REPLICATION EFFICIENCY THROUGH OPTIMIZATION OF СHANGE DATA CAPTURE METHODS

Authors

DOI:

https://doi.org/10.32689/maup.it.2025.2.27

Keywords:

asynchronous processing, streaming architectures, transaction consistency, change buffering, in-memory analytics

Abstract

Relevance of the research is driven by the growing need for efficient real-time data replication in distributed and hybrid environments, where system scalability, consistency, and low latency are critical. Traditional change propagation mechanisms are increasingly inadequate under high-frequency workloads, highlighting the need for a re-evaluation and modernization of Change Data Capture (CDC) methods.The aim of the article is to provide a scientific rationale and develop approaches to improving the efficiency of real- time data replication through the optimization of Change Data Capture methods, taking into account the architectural and operational specifics of modern distributed computing environments.The research methodology is based on systems analysis of CDC implementations in cloud and hybrid infrastructures, architectural modeling of replication flows, comparative evaluation techniques, typological classification of functional characteristics, and a criterion-based approach to assessing efficiency in various data update scenarios.The research results include the identification of key functional features of CDC mechanisms, the classification of architectural replication models, and the substantiation of performance criteria such as latency, throughput, consistency, scalability, connectivity flexibility, and resource efficiency. Key technical constraints were identified in high-change-rate environments, particularly performance instability, access conflicts, and compatibility issues with traditional database systems and streaming platforms. It was demonstrated that event-driven architectures with asynchronous processing and adaptive buffering yield better performance when properly tuned.In the conclusions, the relevance of hybrid CDC models is substantiated, the dependency between replication efficiency and architectural processing models is confirmed, and common implementation barriers in conventional database and stream- processing ecosystems are outlined.The research perspectives include the development of intelligent CDC strategies, dynamic change flow orchestration, and the improvement of cross-platform interoperability in multi-cloud infrastructures.

References

Юринець Р. Б., Пірко І. Б. Інноваційні методики інтегрування даних для оптимізації процесу наповнення сховища даних. Науковий вісник НЛТУ України. 2024. Вип. 34, № 6. С. 101–105. DOI: https://doi.org/10.36930/40340614.

Beyond Teradata Migration: Implement a Modern Data Warehouse in Azure Synapse Analytics. Microsoft Azure: website. 2023. URL: https://learn.microsoft.com/en-us/azure/synapse-analytics/migration-guides/teradata/7-beyond-data-warehouse-migration (date of access: 13.06.2025).

Capture Configuration Challenges. 2023 IEEE IAS Petroleum and Chemical Industry Technical Conference (PCIC), New Orleans, USA. IEEE, 2023. P. 195–203. DOI: 10.1109/PCIC43643.2023.10414316.

Chandra H. Experimental results on change data capture methods implementation in different data structures to support real-time data warehouse. International Journal of Business Information Systems. 2020. Vol. 34, No. 3. P. 373. DOI: https://doi.org/10.1504/ijbis.2020.108651 (date of access: 13.06.2025).

Debezium Documentation. Debezium: website. 2024. URL: https://debezium.io/documentation (дата звернення: 06.06.2025).

Dhakal P., Munikar M., Dahal B. One-Shot Template Matching for Automatic Document Data Capture. 2019 Artificial Intelligence for Transforming Business and Society (AITB), Kathmandu, Nepal. IEEE, 2019. P. 1–6. DOI: 10.1109/ AITB48515.2019.8947440.

Event-Driven Architecture. Confluent Developer: website. 2024. URL: https://developer.confluent.io/courses/microservices/event-driven-architecture/ (date of access: 13.06.2025).

Hao L., Jiang T., Lin Y., Lu Y. Methods for Solving the Change Data Capture Problem. In: Xiong N., Li M., Li K., Xiao Z., Liao L., Wang L. (eds). Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2022. Lecture Notes on Data Engineering and Communications Technologies. Cham: Springer, 2023. Vol. 153. P. 1025–1034. DOI: https:// doi.org/10.1007/978-3-031-20738-9_87.

Harris P. A., Taylor R., Minor B. L., Elliott V., Fernandez M., O'Neal L., McLeod L., Delacqua G., Delacqua F., Kirby J., Duda S. N. The REDCap Consortium: Building an International Community of Software Platform Partners. Journal of Biomedical Informatics. 2019. Vol. 95. Article 103208. DOI: https://doi.org/10.1016/j.jbi.2019.103208.

Horbenko Y. Confidential Computing in Front-End: Enhancing Data Security with Secure Enclaves and Homomorphic Encryption. International Journal of Advanced Multidisciplinary Research and Studies. 2025. Vol. 5, No. 3. P. 308–321. URL: https://www.multiresearchjournal.com/admin/uploads/archives/archive-1747130538.pdf (date of access: 13.06.2025).

Horbenko Y. Secure Front-End Automation Framework: A Novel Approach to Client-Side Data Encryption and Zero Trust API Interaction. Asian Journal of Research in Computer Science. 2025. Vol. 18, No. 6. P. 177–193. DOI: https://doi.org/10.9734/ajrcos/2025/v18i6690.

Imani F. M., Widyasari Y. D. L., Arifin S. P. Optimizing Extract, Transform, and Load Process Using Change Data Capture. 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Batam, Indonesia. IEEE, 2023. P. 266–269. DOI: 10.1109/ISRITI60336.2023.10468009.

Import Data into a Secured BigQuery Data Warehouse. Google: website. 2023. URL: https://cloud.google.com/architecture/blueprints/confidential-data-warehouse-blueprint (date of access: 13.06.2025).

Seenivasan D., Vaithianathan M. Real-Time Adaptation: Change Data Capture in Modern Computer Architecture. ESP International Journal of Advancements in Computational Technology. 2023. Vol. 1, No. 2. P. 49–61. URL: https://www.researchgate.net/publication/381225264 (date of access: 13.06.2025).

Snowpipe Streaming – Snowflake Documentation. Snowflake: website. 2024. URL: https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-overview

Track Data Changes (CDC) in SQL Server. Microsoft: website. 2024. URL: https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server (дата звернення: 06.06.2025).

Vagadia B. Data Capture and Distribution. In: Digital Disruption. Future of Business and Finance. Cham: Springer, 2020. P. 45–66. DOI: https://doi.org/10.1007/978-3-030-54494-2_4.

Yan W. Q. Introduction to Intelligent Surveillance: Surveillance Data Capture, Transmission, and Analytics. Cham: Springer, 2019. 425 p. URL: https://books.google.com.ua/books?id=pheJDwAAQBAJ (date of access: 13.06.2025).

Zakiah A., Yusuf R., Prihatmanto A. S. The Benefits of Change Data Capture in Enhancing Data Availability in the Digital Transformation Era. Widyatama International Conference on Engineering 2024 (WICOENG 2024). Atlantis Press, 2024. P. 302–308. DOI: https://doi.org/10.2991/978-94-6463-618-5_32.

Zheng T., Chen G., Wang X., Chen C., Wang X., Luo S. Real-time intelligent big data processing: technology, platform, and applications. Science China Information Sciences. 2019. Vol. 62. Article 82101. DOI: https://doi.org/10.1007/s11432-018-9834-8.

Downloads

Published

2025-09-23

How to Cite

ТЕРЛЕЦЬКА, Х. (2025). ENHANCING REAL-TIME DATA REPLICATION EFFICIENCY THROUGH OPTIMIZATION OF СHANGE DATA CAPTURE METHODS. Information Technology and Society, (2 (17), 188-194. https://doi.org/10.32689/maup.it.2025.2.27