OPERATIONS ON THE TWISTED EDWARS CURVE, AND ITS APPLICABILITY IN CRYPTOGRAPHY
DOI:
https://doi.org/10.32689/maup.it.2021.1.8Keywords:
finite field, algebraic curve, group of points of an elliptic curve, divisibility of a point of a curve in half, generator of cryptostable sequenceAbstract
Most cryptosystems in modern cryptography can naturally be «translated» into elliptical curves. We consider Edwards algebraic curves over a finite field, which are currently one of the most promising carriers of point sets used for fast group operations available in asymmetric cryptosystems, in particular, for constructing random cryptostable sequences. It is shown that the projective curve is not elliptical. The conditions for the existence of divisibility in half of an element from the group of points of a twisted Edwards curve, which is important in algorithms, are investigated. The genus of the twisted Edwards curve is found. The aim of this work is to find the criterion for dividing the point of the curve in half over the field and to analyze the properties of the twisted Edwards curve necessary to construct a generator of pseudo-random cryptostable sequences and construct a one-way function for it.
References
Edwards H. A normal form for elliptic curves. American Mathematical Society. 2007. Vol. 44. No. 3. P. 393–422.
Hisil Huseyin, Koon-Ho Wong Kenneth, Carter Gary. Twisted Edwards Curves Revisited. ASIACRYPT LNCS 5350. 2008. P. 326–343.
Скуратовський Р., Мовчан П. В., Нормалiзацiя скрученої кривої Едвардса та дослiдження її властивостей над Fp. Збiрник праць 14 Всеукраїнської науково-практичної конференцiї. ФТI НТУУ «КПI». 2016. Том 2. С. 102–104.
Скуратовський Р. Дослiдження властивостей скрученої кривої Едвардса. Конференцiя державної служби спецiального зв’язку та захисту iнформацiї. URL: http://www.dstszi.gov.ua/dstszi/control/uk/publish/article?showHidden=1artid=252312catid=240232 ctime=1464080781894
Сергієнко І., Задірака В., Литвин О. Елементи загальної теорії оптимальних алгоритмів та суміжні питання. К. : Наук. думка, 2012. 400 с.
Алексеев Е., Ошкин И., Попов В., Смышляев С., Сонина Л. О перспективах использования скрученных эллиптических кривых Эдвардса со стандартом ГОСТ Р 34.10-2012 и алгоритмом ключевого обмена на его основе. Материалы XVI международной конференции «РусКрипто 2014». 2014. С. 24–26.
Menezes A., Okamoto T., Vanstone S. Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field. IEEE Transactions On Information Theory. 1993. Vol. 39. No. 5. P. 1603–1646.
Skuratovskii R. V. Twisted Edwards curve and its group of points over finite field Fp. Лiтня школа «Алгебра, Топологiя, Аналiз». Одеса, 2016. С. 122–124.
Skuratovskii R., Skruncovich U. Twisted Edwards curve and its group of points over finite field Fp. Akademgorodok, Novosibirsk, Russia. Conference. Graphs and Groups, Spectra and Symmetries. URL: http://math.nsc.ru/conference/g2/g2s2/exptext/SkruncovichSkuratovskii-abstract-G2S2.pdf
Fulton W. Algebraic curves. An Introduction to Algebraic Geometry. Third Preface – January, 2008. 121 p.
Deepthi P.P., Sathidevi P.S. New stream ciphers based on elliptic curve point multiplication. Computer Communications. 2009. Vol. 32. P. 25–33.
Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, Christiane Peters. Twisted Edwards Curves. IST Programme ECRYPT, and in part by grant ITR-071649. 2008. Р. 1–17.
Бессалов А.В., Цыганкова О.В. Производительность групповых операций на скрученной кривой Эдвардса над простым. Радиотехника. 2015. Вып. 181. С. 58–63.
Skuratovskii R.V. Constructing of finite field normal basis in deterministic polynomial time (in Ukraine). Bulletin of Kiev national university of Tarasa Shevchenka. 2011. P. 49–54.