FACE RECOGNITION ON A STREAMING VIDEO SERIES USING THE OPENCV LIBRARY
DOI:
https://doi.org/10.32689/maup.it.2022.2.13Keywords:
video streaming, databases, image recognition, classification, computer vision, Python, OpenCV, LBPAbstract
Face Detection System is a technology that can match a human face to a digital image or video frame to a database of individuals, commonly used to authenticate users through identity verification services, and works by accurately identifying and measuring facial features in a given image. Face recognition systems are used today by governments and private companies around the world, their effectiveness varies, and some systems have previously been written off due to their inefficiency. Thus, the creation of a program for human face recognition is a topical issue. The aim of the article is to study the theoretical aspects of the development of the human face recognition system and the practical implementation of the relevant software package. The face recognition procedure simply requires that any device equipped with digital photographic technology generate and receive the images and data necessary to create and record a biometric image of the person to be identified. The main methods of face recognition are considered: geometric methods, principal components method, flexible comparison method on graphs, Viola-Jones method, binary templates, neural networks. The implementation of the algorithm of the face recognition system is proposed. This paper analyzes the existing algorithms and systems for face detection and recognition, weighing their advantages and disadvantages. The percentage of human face recognition accuracy and performance were analyzed in practice, taking into account such factors as lighting, image quality, number of faces in the image, human face recognition using Local Binary Patterns (LBP) using the OpenCV computer vision library.
References
Ahonen T., Hadid A., Pietikainen M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006. Vol. 28. Issue 12. Р. 2037–2041.
Andrew Heinzman. How Does Facial Recognition Work? URL: https://www.howtogeek.com/427897/how-doesfacial-recognition-work/
Нейромережний підхід до комп’ютерного розпізнавання облич / І. О. Палій, А. О. Саченко, С. Г. Антощук, Т. О. Бурак. Штучний інтелект. 2010. No. 3. С. 378–387.
Error Rates in Users of Automatic Face Recognition Software / D. White, J. D. Dunn, A. C. Schmid, R. I. Kemp. PLOS ONE. 2015. Vol. 10 (10). Pp. 1–14. DOI: 10.1371/journal.pone.0139827
Haghighat M., Abdel-Mottaleb M. Low Resolution Face Recognition in Surveillance Systems Using Discriminant Cor-relation Analysis. 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). 2017. Pp. 912–917. DOI: 10.1109/FG.2017.130
Error Rates in Users of Automatic Face Recognition Software / D. White, J. D. Dunn, A. C. Schmid, R. I. Kemp. PLOS ONE. 2015. Vol. 10 (10). Pp. 1–14. Mode of access: DOI: 10.1371/journal.pone.0139827
About OpenCV. URL: http://opencv.org/about.html
Face Recognition by Elastic Bunch Graph Matching Laurenz Wiskott, Jean-Marc Fellous, Norbert Kruger and Christoph von der Malsburg. Computer Society Washington. DC, 1997. 23 p.
Fischer A., Bunke H. Character prototype selection for handwriting recognition in historical documents with graph similarity features : proc. 19th European Signal Processing Conference. 2011. Pp. 1435–1439.
Hiromichi Fujisawa, Yasuaki Nakano и Kiyomichi Kurino. «Segmentation methods for character recognition: from segmentation to document structure analysis». В: Proceedings of the IEEE 80.7 (1992), p. 1079–1092.
Gary Bradsky and Adrian Kaler. Learning OpenCV.
Maad M. M. Handwriting Recognition Methods. IEEE Transactions on Signal Processing. 2005. Pp. 1–3.
Брилюк Д. В., Старовойтов В. В. Распознавание человека по изображению лица нейросетевыми методами. Минск, 2002. 54 с.
Броневич А. Н. Лекции по методам машинного обучения. URL: http://window.edu.ru/resource/800/73800/files/lect_Lepskiy_Bronevich_pass.pdf
Вежневец В., Дегтярева А. Обнаружение и локализация лица на изображении. Компьютерная графика и мультимедиа. 2003. № 1 (3).
Герасимов Б. М., Тарасов В. А., Токарев И. Б. Человеко-машинные системы принятия решений с элементами искусственного интеллекта. Київ : Наукова Думка, 1993. 184 с.
Згорткові нейронні мержі. 2017. URL: http://ru.datasides.com/code/cnn-convolutional-neural-networks/