PROSPECTS OF USING UNMANNED AERIAL VEHICLES FOR RADIATION MONITORING AND CONTROL IN UKRAINE
DOI:
https://doi.org/10.32689/maup.it.2024.2.12Keywords:
UAV, radiation monitoring, detectorsAbstract
The article explores the prospects of using unmanned aerial vehicles (UAVs) for radiation monitoring and control in Ukraine. It describes modern mobile platforms, their advantages and disadvantages, and the main challenges faced when using UAVs for radiation monitoring. The article highlights the experience of employing UAVs during the aftermath of nuclear accidents. It provides an analysis of current ionizing radiation detection technologies and presents examples of successful UAV applications for mapping contaminated areas. Additionally, the article discusses the prospects for the development of radiation monitoring in Ukraine using UAVs, emphasizing the need for further research in this field to ensure effective radiation risk management.
References
Marques L., Vale A., Vaz P. State-of-the-art mobile radiation detection systems for different scenarios. Sensors. 2021. Vol. 21(4). 1051. URL: https://doi.org/10.3390/s21041051
Popov O., Іatsyshyn A., Kovach V., Artemchuk V., Taraduda D., Sobyna V., Sokolov D., Dement M., Yatsyshyn T., Matvieieva I. Analysis of Possible Causes of NPP Emergencies to Minimize Risk of Their Occurrence. Nuclear and Radiation Safety. 2019. Vol. 1(81). P. 75–80. URL: https://doi.org/10.32918/nrs.2019.1(81).13
SchneiderF.E.,GaspersB.,PeräjärviK.,GårdestigM.Currentstateoftheartofunmannedsystemswithpotentialto be used for radiation measurements and sampling: ERNCIP Thematic Group Radiological and Nuclear Threats to Critical Infrastructure Task 3 Deliverable 1. Luxembourg: Publications Office of the European Union, 2015. 63 p.
Lockheed Martin. URL: https://www.lockheedmartin.com
Martin P. G., Hutson C., Payne L., Connor D., Payton O. D., Yamashiki Y., Scott T. B. Validation of a novel radiation mapping platform for the reduction of operator-induced shielding effects. Journal of Radiological Protection. 2018. Vol. 38(3). P. 1097–1110. URL: https://doi.org/10.1088/1361-6498/aad5f2
Connor D. T., Wood K., Martin P. G., Goren S., Megson-Smith D., Verbelen Y., Chyzhevskyi I., Kirieiev S., Smith N. T., Richardson T., Scott T. B. Radiological Mapping of Post-Disaster Nuclear Environments Using Fixed-Wing Unmanned Aerial Systems: A Study from Chornobyl. Frontiers in Robotics and AI. 2020. Vol. 6. URL: https://doi.org/10.3389/frobt.2019.00149
Stöcker C., Bennett R., Nex F., Gerke M., Zevenbergen J. Review of the Current State of UAV Regulations. Remote Sensing. 2017. Vol. 9(5). 459. URL: https://doi.org/10.3390/rs9050459
Murphy R. R. Disaster Robotics. MIT Press: Cambridge, MA, USA, 2014.
Duncan B. A., Murphy R. R. Autonomous Capabilities for Small Unmanned Aerial Systems Conducting Radiological Response: Findings from a High-fidelity Discovery Experiment. Journal of Field Robotics, 2014. Vol. 31(4) P. 522–536. URL: https://doi.org/10.1002/rob.21503
LowdonM.,MartinP.G.,HubbardM.W.J.,TaggartM.P.,ConnorD.T.,VerbelenY.,SellinP.J.,ScottT.B.Evaluationof Scintillator Detection Materials for Application within Airborne Environmental Radiation Monitoring. Sensors. 2019. Vol. 19(18). 3828. URL: https://doi.org/10.3390/s19183828
LowdonM.,MartinP.G.,HubbardM.W.J.,TaggartM.P.,ConnorD.T.,VerbelenY.,SellinP.J.,ScottT.B.Evaluationof Scintillator Detection Materials for Application within Airborne Environmental Radiation Monitoring. Sensors. 2019. Vol. 19(18). 3828. URL: https://doi.org/10.3390/s19183828
Elfes A., Siqueira Bueno S., Bergerman M., Ramos J. G. A semi-autonomous robotic airship for environmental monitoring missions. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation: Leuven, Belgium: IEEE, 1998. P. 3449–3455.
Zabulonov Y., Popov O., Burtniak V., Iatsyshyn A., Kovach V., Iatsyshyn A. Innovative Developments to Solve Major Aspects of Environmental and Radiation Safety of Ukraine. Studies in Systems, Decision and Control. 2021. P. 273–292. URL: https://doi.org/10.1007/978-3-030-69189-9_16