THE FUNCTIONAL STATE OF THE KIDNEYS IN EXPERIMENTAL AUTOIMMUNE HEYMAN NEPHRITIS AGAINST THE BACKGROUND OF THE INTRODUCTION OF CRYOEXTRACTS OF THE PLACENTA AND SPLEEN, AS WELL AS THE CONDITIONED MEDIUM OF MESENCHYMAL STEM CELLS
DOI:
https://doi.org/10.32689/2663-0672-2024-2-2Keywords:
Heymann autoimmune nephritis, placenta cryoextract, mesenchymal stem cells, glomerular filtration rate, creatinineAbstract
Introduction. Among all autoimmune glomerulonephritis (GN), idiopathic membranous nephropathy (MN) is the leading cause of chronic kidney disease. Idiopathic MN is a primary membranous GN characterized by damage to podocytes mediated by antibodies against podocyte antigens deposited under glomerular visceral epithelial cells to activate complement. Cell-free cryopreserved biological agents – cryopreserved extracts of biological tissues, in particular the spleen (as an immunocompetent organ) and the placenta (as a key regulator of intrauterine fetal development) have attracted our attention as innovative biotechnological drugs for the treatment of MN. Products of cell cultivation – the so-called conditioned media, in particular, conditioned media obtained from mesenchymal stromal cells (MSC-СM) – deserve no less attention. Previous studies have shown convincing evidence of distinct immunomodulating activity in other autoimmune diseases (in particular, in autoimmune arthritis and allergic encephalomyelitis, etc.) in cryoextract of the placenta (CEP), cryoextract of the spleen (CES) and MSC-CM. The aim of the study is to characterize the influence of CEP, CES and MSС-CM on the functional state of kidneys in experimental autoimmune Heimann nephritis. Materials and methods. Studies on the effectiveness of cell-free cryopreserved biological agents in Heimann's autoimmune nephritis (AIN) were conducted on 42 male rats. AIN was reproduced according to the method of Heymann W.R. and sang (1965) in the modification of Wichert A.M. (1973). On the 70th day of the experiment, the functional state of the kidneys was assessed under the conditions of spontaneous diuresis, after which the animals were removed from the experiment and blood samples were taken. The content of urea in the blood was determined spectrophotometrically by the reaction of ammonia with 2-oxoglutarate with the participation of glutamate dehydrogenase. The content of creatinine in the blood was determined spectrophotometrically by the reaction of picrates with creatinine. Glomerular filtration rate (GFR) was calculated according to the method of Besseling P.J. and all. Research results and their discussion. It was established that on the 70th day of the experiment, a statistically significant (p˂0.001) decrease in the volume of daily diuresis by 47.2% compared to the parameters of intact rats was noted, which was 3.7±0.2 ml/day. Biochemical blood tests showed that against the background of a decrease in daily diuresis in rats with AIN, a statistically significant (p˂0.001) increase in creatinine concentration by 111.3% and urea by 233.3% compared to the parameters of intact rats was noted. Against the background of the use of CEP, the lowest decrease in the concentration of creatinine in the blood (p=0.01) was noted – 16.8%. The use of CES in rats with AIN had nephroprotective properties comparable in expression to canefron, which was indicated by a statistically significant (p=0.002) increase in GFR by 64.3% (551±43 μl/min) compared to the indicators of rats in the control group. The most pronounced restoration of the functional state of the kidneys of rats was established against the background of the use of MSC-CM. Conclusions. The study showed that the studied cell-free cryopreserved biological agents have nephroprotective activity against the background of Hayman's nephritis in rats, which was indicated by the restoration of the functional activity of the kidneys, which was confirmed by the increase in the gastrointestinal tract and the decrease in the concentration of creatinine and urea in the blood of rats with AIN. According to the expressiveness of the nephroprotective effect (according to GFR indicators), the studied cell-free cryopreserved biological agents can be placed in the following sequence: MSC-CM (GFR: 856±59 ml/min) ˃ CES (GFR: 551±43 mh/min) ˃ CEP (GFR: 504±19 ml/min).
References
Akiyama S., Imai E., Maruyama S. Immunology of membranous nephropathy. F1000Res. 2019. № 8. Rev-734. DOI: https://doi.org/10.12688/f1000research.17589.1
Anders H. J., Kitching A. R., Leung N., Romagnani P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nature Reviews Immunology. 2023. № 23 (7). Р. 453–471. DOI: https://doi.org/10.1038/s41577-022-00816-y
Becker G. J., Hewitson T. D. Animal models of chronic kidney disease: useful but not perfect. Nephrology Dialysis Transplantation. 2013. № 28 (10). Р. 2432–2438. DOI: https://doi.org/10.1093/ndt/gft071
Bespalova I. G. Peptide composition and biological action of extracts of cryopreserved pig spleen fragments and piglet skin. Dissertation. Kharkiv, 2016. 162 p. Access: https://nrat.ukrintei.ua/searchdoc/0416U004539/
Besseling P. J., Pieters T. T., Nguyen I.T.N., de Bree P. M., Willekes N., Dijk A. H., Bovee D. M., Hoorn E. J., Rookmaaker M. B., Gerritsen K. G., Verhaar M. C., Gremmels H., Joles J. A. A plasma creatinine- and urea-based equation to estimate glomerular filtration rate in rats. American Journal of Physiology-Renal Physiology. 2021. № 320 (3). Р. 518–524. DOI: https://doi.org/10.1152/ajprenal.00656.2020
Borisov S. O., Kolosov O. M., Kostev F. I., Borisov O. V. Study of the functional state of the kidneys of rats with acute pyelonephritis on the background of diabetes under the conditions of drug exposure in the experiment. Health of Man. 2020. № 72 (1). Р. 80–83. DOI: https://doi.org/10.30841/2307-5090.1.2020.205494
Cremoni M., Brglez V., Perez S., Decoupigny F., Zorzi K., Andreani M., Gérard A., Boyer-Suavet S., Ruetsch C., Benzaken S., Esnault V., Seitz-Polski B. Th17-immune response in patients with membranous nephropathy is associated with thrombosis and relapses. Frontiers in Immunology. 2020. № 11. 574997. DOI: https://doi.org/10.3389/fimmu.2020.574997
Cybulsky A. V., Quigg R. J., Salant D. J. Experimental membranous nephropathy redux. American Journal of Physiology-Renal Physiology. 2005. № 289 (4). Р. 660–671. DOI: https://doi.org/10.1152/ajprenal.00437.2004
Dantas M., Silva L.B.B., Pontes B.T.M., Dos Reis M. A., de Lima P.S.N., Moysés Neto M. Membranous nephropathy. Brazilian Journal of Nephrology. 2023. № 45 (2). Р. 229–243. DOI: https://doi.org/10.1590/2175-8239-JBN-2023-0046en
Deepthi R., Suhasin G. A review on animal models of chronic kidney disease – an update. Biomedical and Pharmacology Journal. 2023. № 16 (3). Р. 1319–1327. DOI: https://dx.doi.org/10.13005/bpj/2711
Francis J. M., Beck L. H. Jr., Salant D. J. Membranous nephropathy: a journey from bench to bedside. American Journal of Kidney Diseases. 2016. № 68 (1). Р. 138–147. DOI: https://doi.org/10.1053/j.ajkd.2016.01.030
Freund J. Some aspects of active immunization. Annual Review of Microbiology. 1947. № 1. Р. 291–308. https://doi.org/10.1146/annurev.mi.01.100147.001451
Globa V. Yu. Use of cryopreserved cell cultures and neurotrophic factors in experimental infravesical obstruction. Dissertation. Kharkiv, 2021. 156 p. Access: https://nrat.ukrintei.ua/searchdoc/0821U100913/
Golubinskaya P. A., Sarycheva M. V., Dolzhikov A. A., Bondarev V. P., Stefanova M. S., Soldatov V. O., Nadezhdin S. V., Korokin M. V., et al. Application of multipotent mesenchymal stem cell secretome in the treatment of adjuvant arthritis and contact-allergic dermatitis in animal models. Pharmacy & Pharmacology. 2020. № 8 (6). Р. 416–425. DOI: https://doi.org/10.19163/2307-9266-2020-8-6-416-425
Guo Q., Wu S., Xu C., Wang J., Chen J. Global Disease Burden from acute glomerulonephritis 1990–2019. Kidney International Reports. 2021. № 6 (8) Р. 2212–2217. DOI: https://doi.org/10.1016/j.ekir.2021.04.038
Heymann W., Kmetec E. P., Wilson S. G., Hunter J. L., Hackel D. B., Okuda R., Cuppage F. Experimental autoimmune renal disease in rats. Annals of the New York Academy of Sciences. 1965. № 124 (1). Р. 310–322. DOI: https://doi.org/10.1111/j.1749-6632.1965.tb18966.x
Hladkykh F. V. Anti-inflammatory properties of diclofenac sodium on background of its combined use with cryopreserved placenta extract in experiment. Problems of Cryobiology and Cryomedicine. 2021. № 31 (4). Р. 364–367. DOI: https://doi.org/10.15407/cryo31.04.364
Hladkykh F. V. Evaluation of tentative and research activity in rats with experimental allergic encephalomyelitis against the administration of cell-free cryopreserved biological agents. Psychiatry, Neurology and Medical Psychology. 2024. № 11 (2(24)). Р. 124–137. DOI: https://doi.org/10.26565/2312-5675-2024-24-02
Hladkykh F. V. Nonsteroidal anti-inflammatory drugs: therapeutic and undesirable effects, ways of their optimization. Vinnytsia, 2022. 216 p. DOI: https://doi.org/10.46879/2022.1
Hladkykh F. V., Chyzh M. O., Manchenko A. O., Belochkіna I. V., Mikhailova I. P. Effect of cryopreserved placenta extract on some biochemical indices of therapeutic efficiency and toxicity of diclofenac sodium in adjuvant-induced experimental arthritis. Pharmacy & Pharmacology. 2021. № 9 (4). Р. 278–93. DOI: https://doi.org/10.19163/2307-9266-2021-9-4-278-293
Jaffe M. Concerning both the precipitation caused in normal urine by picric acid and a new reaction with creatinine. Zeitschrift Fuer Physiologische Chemie. 1886. № 10. Р. 391–400.
Jefferson J. A., Pippin J. W., Shankland S. J. Experimental models of membranous nephropathy. Drug Discovery Today: Disease Models. 2010. № 7 (1–2). Р. 27–33. DOI: https://doi.org/10.1016/j.ddmod.2010.11.001
Kamyshnikov V. S. Handbook of clinical and biochemical research and laboratory diagnostics. MEDpress-inform; 2009. 896 p.
Kovalcikova A., Jansakova K., Gyuraszova M., Podracka L., Sebekova K., Celec P, Tothova L. Salivary creatinine and urea are higher in an experimental model of acute but not chronic renal disease. PLoS One. 2018. № 13 (7). e0200391. DOI: https://doi.org/10.1371/journal.pone.0200391
Kuroki A., Iyoda M., Shibata T., Sugisaki T. Th2 cytokines increase and stimulate B cells to produce IgG4 in idiopathic membranous nephropathy. Kidney International. 2005. № 68 (1). Р. 302–310. DOI: https://doi.org/10.1111/j.1523-1755.2005.00415.x
Li H., Wu H., Guo Q., Yu H., Xu Y., Yu J., Wang Z., Yi H. Myeloid-derived suppressor cells promote the progression of primary membranous nephropathy by enhancing Th17 response. Frontiers in Immunology. 2020. № 11. 1777. DOI: https://doi.org/10.3389/fimmu.2020.01777
Lv X., Wang J., Zhang L., Shao X., Lin Y., Liu H., Ma G., Li J., Zhou S., Yu P. Canagliflozin reverses Th1/Th2 imbalance and promotes podocyte autophagy in rats with membranous nephropathy. Frontiers in Immunology. 2022. № 13. 993869. DOI: https://doi.org/10.3389/fimmu.2022.993869
Masutani K., Taniguchi M., Nakashima H., Yotsueda H., Kudoh Y., Tsuruya K., Tokumoto M., Fukuda K., Kanai H., Hirakata H., Iida M. Up-regulated interleukin-4 production by peripheral T-helper cells in idiopathic membranous nephropathy. Nephrology Dialysis Transplantation. 2004. № 19 (3). Р. 580–586. DOI: https://doi.org/10.1093/ndt/gfg572
Monatko K. V. Experimental study of the nephroprotective effect of freeze-dried watermelon powder. Dissertation. Kharkiv, 2014. 217 p. Access: https://nrat.ukrintei.ua/searchdoc/0414U004729/
Motavalli R., Etemadi J., Soltani-Zangbar M. S., Ardalan M. R., Kahroba H., Roshangar L., Nouri M., Aghebati-Maleki L., Khiavi F. M., Abediazar S., Mehdizadeh A., Hojjat-Farsangi M., Mahmoodpoor A., Kafil H. S., Zolfaghari M., Ahmadian Heris J., Yousefi M. Altered Th17/Treg ratio as a possible mechanism in pathogenesis of idiopathic membranous nephropathy. Cytokine. 2021. № 141. 155452. DOI: https://doi.org/10.1016/j.cyto.2021.155452
Podpletnia O. A., Khomyak N. V., Sokolova K. V,. Kaidash S. P., Khomyak O. V. Phytotherapeutic drugs with nephroprotective activity (review). Medical perspectives. 2017. № 22 (17). Р. 10–7. DOI: https://doi.org/10.26641/2307-0404.2017.1.100866
Prokopyuk O. S. Placenta cryopreservation and determination of the mechanisms of its influence on the body of recipients of late ontogenesis (experimental study). Dissertation. Kharkiv, 2011. 351 p. Access: https://nrat.ukrintei.ua/searchdoc/0514U000218/
Qi Y. Y., Zhou X. J., Cheng F. J., Hou P., Ren Y. L., Wang S. X., Zhao M. H., Yang L., Martinez J., Zhang H. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-α in lupus nephritis. Annals of the Rheumatic Diseases. 2018. № 77 (12). Р. 1799–1809. DOI: https://doi.org/10.1136/annrheumdis-2018-213028
Repin M. V., Chyzh Yu. O., Marchenko L. M., Govorukha T. P., Brusentsov O. F. Effect of placenta cryoextract and blockade of the renin-angiotensin-aldosterone system on the development of renal failure in rats. Problems of cryobiology and cryomedicine. 2021. № 31 (3). P. 223–235. DOI: https://doi.org/10.15407/cryo31.03.22
Ronco P., Beck L., Debiec H., Fervenza F.C., Hou F.F., Jha V., Sethi S., Tong A., Vivarelli M., Wetzels J. Membranous nephropathy. Nature Reviews Disease Primers. 2021. № 7 (1). Р. 69. DOI: https://doi.org/10.1038/s41572-021-00303-z
Rosenzwajg M., Languille E., Debiec H., Hygino J., Dahan K., Simon T., Klatzmann D., Ronco P. B- and T-cell subpopulations in patients with severe idiopathic membranous nephropathy may predict an early response to rituximab. Kidney International. 2017. № 92 (1). Р. 227–237. DOI: https://doi.org/10.1016/j.kint.2017.01.012
Rybolovlev Yu. R., Rybolovlev R. S. Dosage of substances for mammals according to biological activity constants. Proceedings of the Academy of Sciences of the USSR. 1979. № 247 (6). Р. 1513–1516.
Salant D. J. Unmet challenges in membranous nephropathy. Current Opinion in Nephrology and Hypertension. 2019. № 28 (1). Р. 70–76. DOI: https://doi.org/10.1097/MNH.0000000000000459
Shebeko S. K. Experimental substantiation of the combined use of amino sugar derivatives and flavonoids in the therapy of chronic kidney disease. Dissertation. Kharkiv, 2017. 516 p. Access: https://nrat.ukrintei.ua/searchdoc/0521U100125/
Shebeko S. K., Chernykh V. V., Zupanets, K. O. Nephroprotective effect of the herbal composition BNO 2103 in rats with renal failure. Health of Man. 2021. № 4. Р. 48–56. DOI: https://doi.org/10.30841/2307-5090.4.2021.252396
Shepitko V. I. Structural and functional indicators of the cryopreserved liver and the effect of its transplantation on the morphofunctional state of a number of internal organs: dissertation. Dissertation. Kharkiv, 2004. 326 p. Access: https://nrat.ukrintei.ua/searchdoc/0504U000610/
Shtryhol S. Yu., Lisovyi V. M., Zupanets I. A., Shebeko S. K., Maslova N. F., Hozhenko A. I., Kharchenko D. S. Methods of experimental modeling of kidney damage for pharmacological research: methodical recommendations. Kharkiv, 2009. 48 p.
Sinico R. A., Mezzina N., Trezzi B., Ghiggeri G.M., Radice A. Immunology of membranous nephropathy: from animal models to humans. Clinical and Experimental Immunology. 2016. № 183 (2). Р. 157–165. DOI: https://doi.org/10.1111/cei.12729
Stefanov O. V., ed. Preclinical studies of medicinal products: methodical recommendations. Kyiv: Avicenna; 2001. 527 p.
Talke H, Schubert G. E. Enzymatic urea determination in the blood and serum in the Warburg optical test. Klinische Wochenschrift. 1965. № 41. Р. 174‒175.
Wang Y. M., Lee V.W.S., Wu H., Harris D.C.H., Alexander S. I. Heymann nephritis in Lewis rats. Current Protocols in Immunology. 2015. № 109. Р. 1–6. DOI: https://doi.org/10.1002/0471142735.im1529s109
Zahraa Mohammed-Ali, Rachel E. Carlisle, Samera Nademi, Jeffrey G. Dickhout, Chapter 16 – Animal Models of Kidney Disease. 2017. Р. 379–417. DOI: https://doi.org/10.1016/B978-0-12-809468-6.00016-4
Zar J.H. Biostatistical analysis (5 ed.). Prentice-Hall, Englewood. 2014; 960 р.
Zhao Q., Dai H., Liu X., Jiang H., Liu W., Feng Z., Zhang N., Gao Y., Dong Z., Zhou X., Du J., Zhang N., Rui H., Yuan L., Liu B. Helper T Cells in Idiopathic membranous nephropathy. Frontiers in Immunology. 2021. № 12. 665629. DOI: https://doi.org/10.3389/fimmu.2021.665629
Zhou X. J., Klionsky D. J., Zhang H. Podocytes and autophagy: a potential therapeutic target in lupus nephritis. Autophagy. 2019. № 15 (5). Р. 908–912. DOI: https://doi.org/10.1080/15548627.2019.1580512